Contemporary Diagnostic & Management Strategies

PHYSIOTHERAPIST, RESEARCHER & EDUCATOR

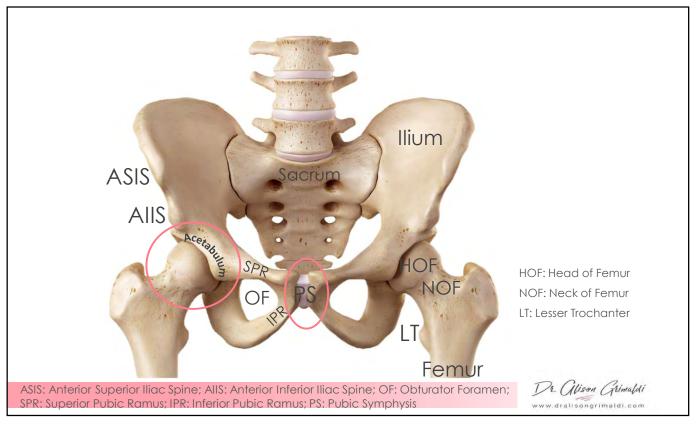
Anterior Hip & Groin Pain

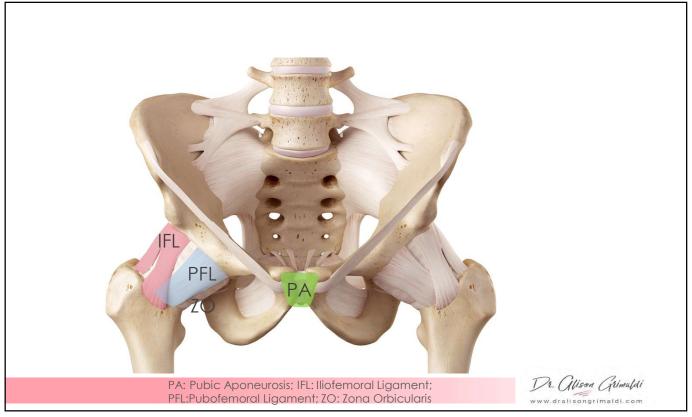
Contemporary diagnostic & management strategies

Dr Alison Grimaldi BPhty, MPhty(Sports), PhD Australian Sports Physiotherapist Practice Principal Physiotec Adjunct Senior Research Fellow University of Queensland, Australia

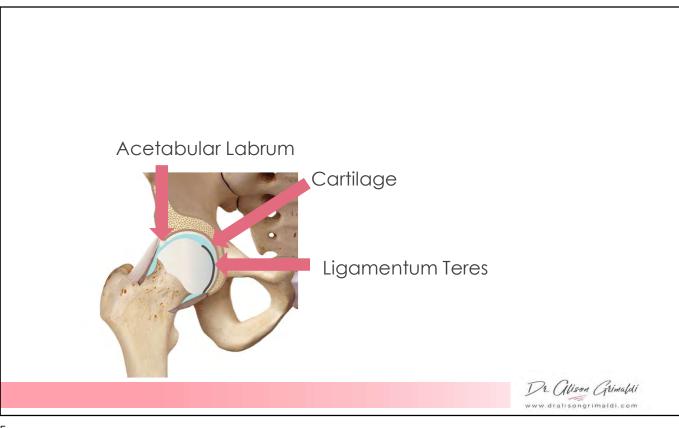
@alisongrimaldi

www.dralisongrimaldi.com

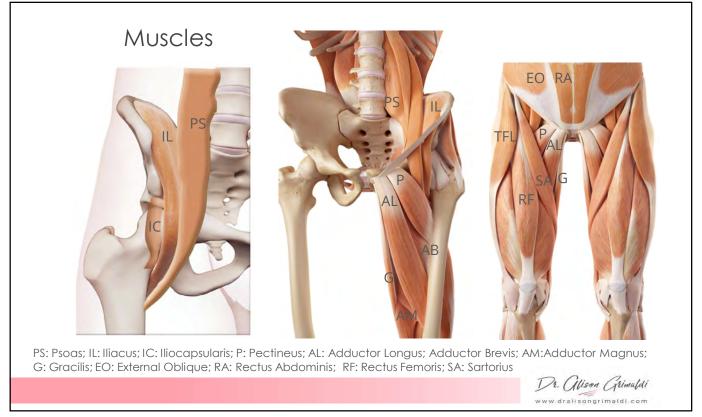

Anatomy of the anterior hip & groin


Dr. alison Grimaldi www.dralisongrimaldi.com

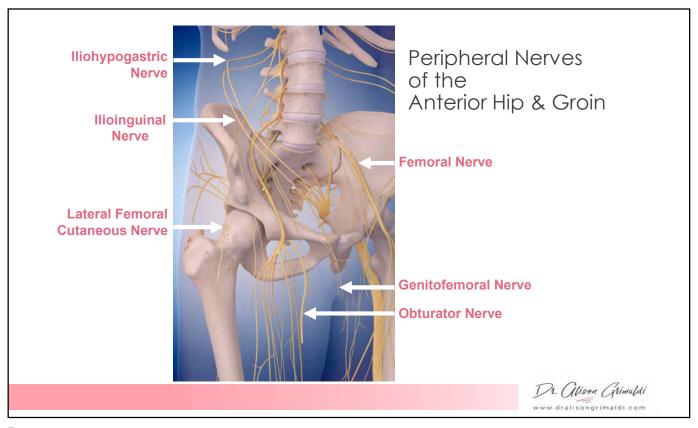
Contemporary Diagnostic & Management Strategies

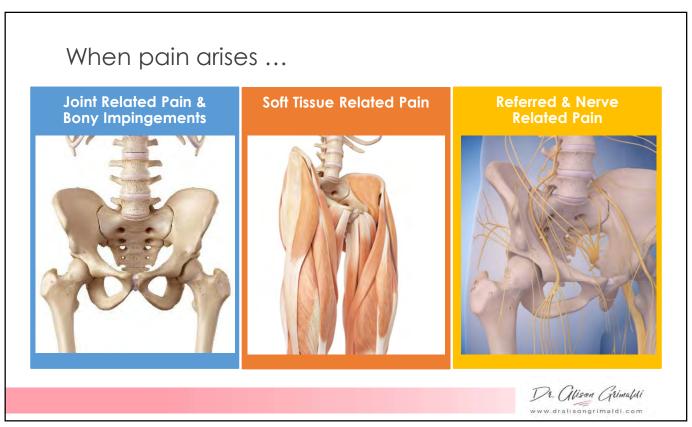


3



Contemporary Diagnostic & Management Strategies

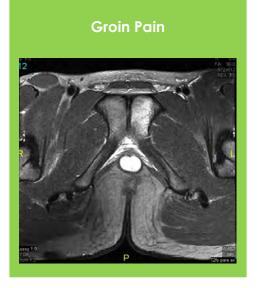



5

Contemporary Diagnostic & Management Strategies

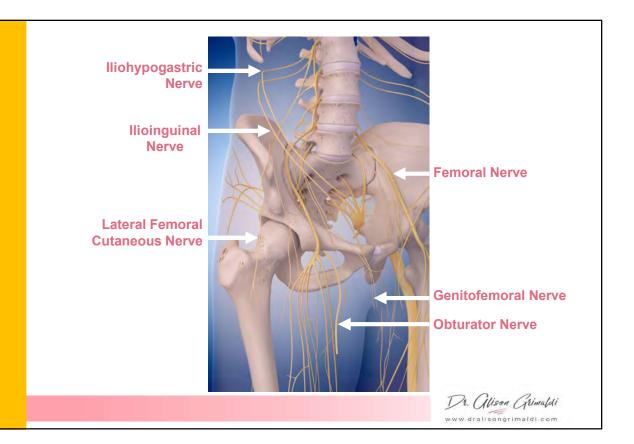
Contemporary Diagnostic & Management Strategies

Joint Related Pain & Bony Risk of intra-articular pathology is thought to be affected by: the severity of the adequacy the amount of of joint morphological adverse joint protection abnormality loading mechanisms Dr. alison Grimaldi www.dralisongrimaldi.com

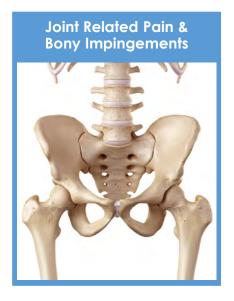

Key Morphological Variants Femoral Acetabular Capsulo-labral Morphology Morphology Deficiency Cam Morphology Overcoverage Congenital Hypermobility (FAI) (FAI) Retroversion (FAI) Acquired Coxa Valga/Vara Trauma Dysplasia Coxa Breva *latrogenic* Type I & II Focal overload Femoral Version Retroversion Anteversion Dr. alison Grimaldi www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

Soft Tissue Related Pain

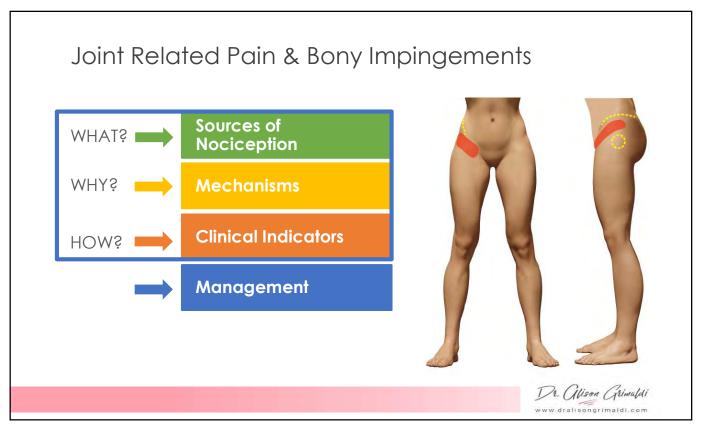

Iliopsoas Related
Anterior Hip Pain

Dr. alison Grimaldi
www.drallsongrimaldi.com


11

Referred & Nerve Related Pain

Contemporary Diagnostic & Management Strategies



ANTERIOR HIP & GROIN PAIN
Joint Related Pain & Bony Impingements
Sources of Nociception & FAI

Module 1 - Lesson 2

13

Contemporary Diagnostic & Management Strategies

Clinical Indicators of IA Source

(1)

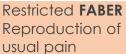
Interview Features

Mid-inguinal pain, 'C Sign', Triangulation sign

Hip stiffness common * Hip flexion & rotation

Catching, locking, clicking, giving way

Pain at EOR *deep flexion, extension, abduction/circumduction


Pain with WB rotation or change of direction

Ache after activity, night ache

2

Physical Features

Restricted hip flexion & IR

Thomas Test Hip P +/- clicking

* Useful for ruling out * Useful for ruling in

Altman et al 1999, Birrell et al 2001, McCarthy & Busconi 1995, Reiman et al 2015, Thorborg et al 2018

r. Alison Grimaldi www.dralisongrimaldi.com

15

Sources of Nociception

Prevalence of pathology & relationship with hip

Prevalence	PAIN	NO PAIN
Labral Tear	62%	54%
Cartilage Defects	64%	12%
Bone Marrow Lesions	More common	
Synovitis - Effusion	More in female dancers	
Lig Teres Tear		55% dancers 22% athletes

Mayes et al 2016

Heerey et al. SRV/MA Br J Sports Med 2018;52:581-593

Dr. alison Grimaldi www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

Synovial Folds & Plicae

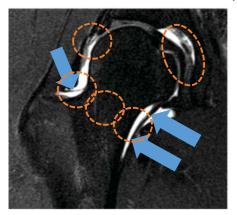
Pectinofoveal fold

Identifiable in 95% on MRA's & 99% on arthroscopy

(Blankenbaker et al 2009)

Potential source of intra-articular clicks

Repetitive clicking may contribute to joint synovitis


Jesse et al 2013

17

Synovial Folds & Plicae

- 3 main plicae:
- 1/Labral
- 2/ Ligamentum
- 3/ Neck Anterior, Medial (inf neck), Lateral (sup neck)

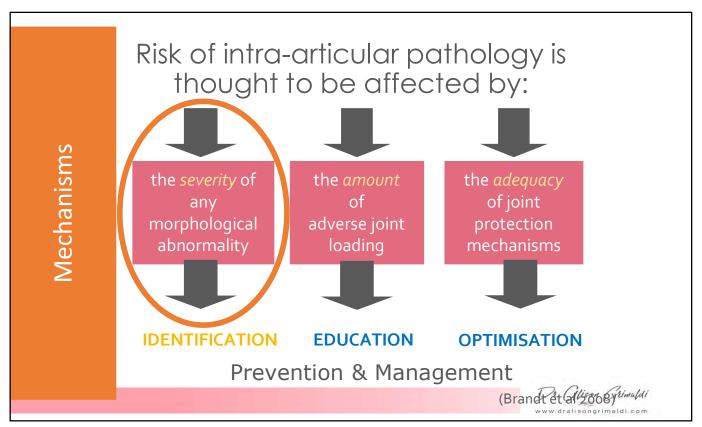
Bencardino et al 2011

Dr. alison Grimaldi
www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

Another potential source of pain associated with cam morphology

- Fat pad sits at anterior head neck junction
- May impinge under acetabular rim in F/IR
- Highly vascularised & innervated
- May be capable of modulating inflammatory & destructive responses in OA



Study comparing surgical resection of fat pad and bone resection vs fat pad resection only At 24/12: 16.0% vs 18.9% improvement in mHHS (nsd)

Jayasekera et al 2014

19

Contemporary Diagnostic & Management Strategies

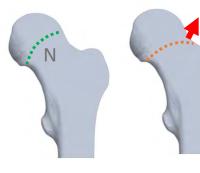
Key Morphological Variants Acetabular Femoral Capsulo-labral Deficiency Morphology Morphology Cam Morphology Overcoverage Congenital Hypermobility (FAI) (FAI) Retroversion (FAI) Acquired Coxa Valga/Vara Trauma Dysplasia Coxa Breva *latrogenic* Type I & II Focal overload **Femoral Version** Retroversion Anteversion Dr. alison Grimaldi www.dralisongrimaldi.com

21

Contemporary Diagnostic & Management Strategies

What causes cam morphology?

Related to growth & loading


- Change in alpha angle occurs when the physis is open
- May present as early as age 10-12
- Increases until physis closes ≈ 16
- Much more common in males
- Much more common in athletes Soccer/football codes, hockey, basketball

Zadpoor 2015; Roels et al 2014, Agricola et al 2014

23

Shape of the growth plate

Growth plate extension towards NOF

Type of loading

Hip ER Hip F Impact Frequency of loading

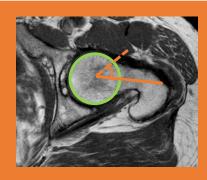
4 or more training sessions/we ek

Zadpoor 2015; Roels et al 2014, Agricola et al 2014

Dr. alison Grimaldi www.drallsongrimaldi.com

Contemporary Diagnostic & Management Strategies

DIAGNOSIS OF CAM MORPHOLOGY


Alpha angle:

< 60°: Normal: low risk of hip OA

> 60°: Defined as cam lesion

Agricola et al 2013

CAM MORPHOLOGY ≠ FAIS

25

Diagnosis of FAIS

Symptoms

+ clinical signs

+ imaging
Cam/Pincer/Mixed
Morphology

= Femoroacetabular Impingement Syndrome

Griffin et al. Warwick Agreement. Br J Sports Med 2016;50:1169–1176

Contemporary Diagnostic & Management Strategies

Is Cam Morphology associated with hip pain?

Prospective Studies

1 prospective study of 200 over 4.4 years

Cam = RR 4.3 for developing hip pain Khanna et al 2014

Cross-sectional cohort studies

Relationship between pain & cam unclear

- mixed findings

Yes: Allen et al 2009, Larson et al 2013

No: Anderson et al 2016, Gosvig et al 2008 Kapron et al 2015, Nardo et al 2015

27

Cam Morphology & relevance to development of hip OA

6 - 25% of people with cam morphology will develop hip OA within 5 -19 years

Van Klij et al 2018

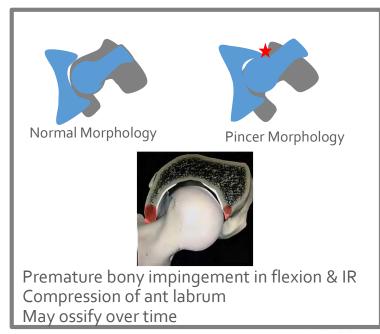
Alpha angle

>78°: Pathological cam Increased risk of adv OA esp if hip IR <20°

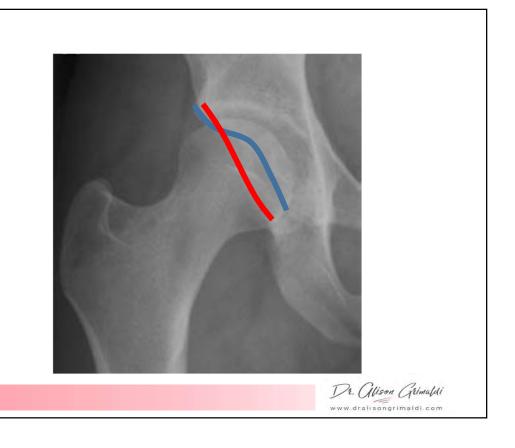
> 85°: 33% chance of developing OA in next 5 yrs

From early adulthood - 45 years of age, relationship unknown

Agricola et al 2013, Nicholls et al 2011, Van Klij et al 2018


Contemporary Diagnostic & Management Strategies

Morphology predisposing to FAI early in range


Pincer Morphology

Influence at Anterior Hip

29

Contemporary Diagnostic & Management Strategies

Acetabular Retroversion

Cross-over sign; PRominence of Ischial Spine Kalberer et al 2008

^{*}Ensure well centred. Coccyx ~1cm above PS; no rotation

31

DIAGNOSIS OF PINCER MORPHOLOGY

Centre-edge angle:

25-35°: Normal

35-40°: Borderline

>40°: Overcoverage

At risk of Pincer FAI

Agricola et al 2013

Contemporary Diagnostic & Management Strategies

Pincer Morphology & relevance to pain & risk of hip OA

No clear relationship established between pincer morphology & pain

Pincer morphology does NOT increase risk of OA May be protective

Agricola et al 2013, Saberi Hosnijeh et al 2016, Thomas et al 2014

33

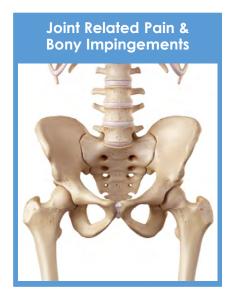
Remember ...

The majority of people with cam &/or pincer morphology **WILL NOT** develop hip pain or OA

Risks of developing pain/OA may be increased by:

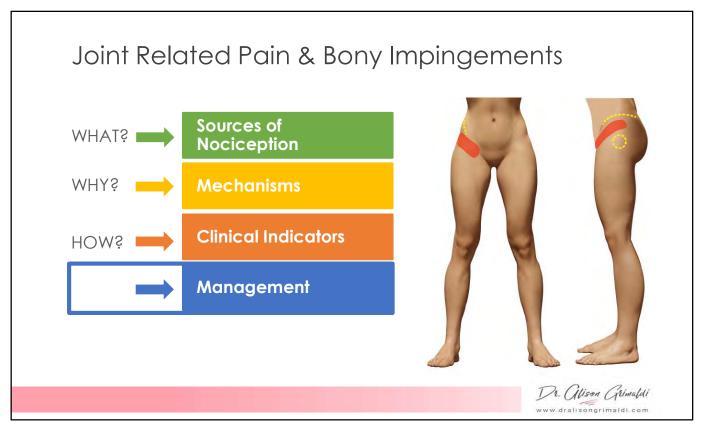
- the severity of cam morphology
- -type and amount of physical activities performed
- -lower muscle strength
- altered gait-pattern characteristics
- -lower range of motion

Van Klij et al 2018



ADDRESS MODIFIABLE FACTORS

Contemporary Diagnostic & Management Strategies



ANTERIOR HIP & GROIN PAIN
Joint Related Pain & Bony Impingements
Management of FAIS

Module 1 - Lesson 3

35

Contemporary Diagnostic & Management Strategies

Management of anterior hip pain associated with FAIS

Possible Options

Load
Management

Surgery
+ Load Mx & Ex

Rehabilitative
Exercise

Manual Therapy

What does the evidence support as best practice?

37

Mansell et al 2018 RCT Hip Arthroscopy vs MT & Exercise

33 female:47 male 80 Mean age 30 n= 91% active duty Army service members f/up 2 years Gp 1 Hip arthroscopy: Labral surgery, acetabuloplasty, femoroplasty + Post Op Rehab: 12-18 PT sessions over 6/52, then every 2-3 weeks Exercise - ROM/motor control - Progress to agility Gp 2 Physical Therapy 12 sessions PT over 6/52 Individualised manual therapy & exercise

Mansell et al AJSM 2018;46(6);1306 - 1314

6-8 exercises - ROM/motor control

Dr. Glison Grimaldi
www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

Mansell et al 2018 RCT Hip Arthroscopy vs Physical Therapy

n=	38 Surgery; 40 PT	
	* 28 of PT gp had surgery	
1° 2°	HOS ADL & Sports iHot33 Hip-Related QoL (100 = no pain & full fx) GROC – 15 point scale	

Both groups improved NSD between groups Uncertainty??

58.1% all participants did not perceive a clinically meaningful change at 2 years

(GROC ≥ 3: somewhat/mod/good/great/very great deal better) 1/3 not fit for duty at 2 years

iHot33 Scores: increase from ≈ 30/100 to **40-50/100**

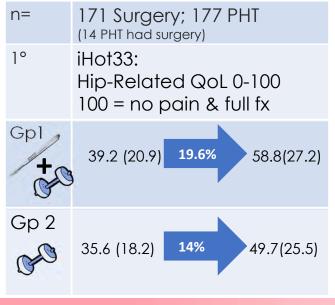
Dr. Glison Grimaldi

www.dralisongrimaldi.com

39

FASHIon RCT Griffin et al 2018 Hip arthroscopy vs 'conservative care'

n=	348 Mean age 35 135 female; 213 male		
f/up	12 months		
Gp 1	Hip arthroscopy: Labral/chondral surgery, bony reshaping + Post Op Rehab: varied, progressive phases		
Gp 2	Personalised Hip Therapy 5-6 sessions over 3-6/12; +/- 1 phone session a. Assessment of pain, function, ROM b. Education – Load Mx; Posture & Gait Mods c. Exercise – Individualised & progressed HEP d. Pain Relief (analgesics, NSAIDs) +/- Manual therapy, Orthotics, CSI		


40

Griffin et al Lancet 2018;391;2225-35

Contemporary Diagnostic & Management Strategies

FASHIon RCT Griffin et al 2018 Hip arthroscopy vs conservative care

Both groups improved
Surgery with rehabilitation
greater improvement*

Adjusted mean difference between groups = 6.8pts better outcome for surgery MCID = 6.1 (Mohtadi et al 2012)

= 10 (Kemp et al 2013)

5 serious adverse events 1 joint infection

Griffin et al Lancet 2018;391;2225-35 *statistical significance

Dr. Glison Grimaldi www.dralisongrimaldi.com

41

What this tells us ...

Both surgery with exercise & physical therapy interventions without surgery help
But not sure what natural Hx in these populations may have been – with no intervention or simple advice

On average, patients are left with <u>moderate</u> levels of Hip-Related QoL 50-60/100

Is 6.8 pts better on iHot worth the surgical intervention?

Who needs early surgery??

Need to establish which factors indicate early surgery may give improved long term outcomes

Still unclear if surgery has any preventative benefit re OA

Contemporary Diagnostic & Management Strategies

FAIT RCT Palmer et al 2019 Hip arthroscopy vs Physio & Activity Modification

n=	222 Mean age 36.2 (18-60) 66% female		
f/up	8/12 so far; change in JSW at 38/12		
Gp 1	Hip arthroscopy: Labral/chondral surgery, bony reshaping + Post Op Rehab: 4 sessions - Focussed on optimising ROM & graded return to activity - Active ROM, isometric exercise, stretching, ex bike - Progress to strengthening & low impact exercise - Impact tasks 6/52; sports-specific rehab as appropriate		
Gp 2 Physio & Activity Modification: 6 sessions - included advice to avoid extremes of F, Abd, IR - focussed on muscle strengthening to improve core stability & movement control (no other specifics) - encouraged a home exercise program (adherence?)			
Palmer et al BMJ 2019;364:1185			

43

FAIT RCT Palmer et al 2019 Hip arthroscopy vs Physio & Activity Modification

Outcome Measures:

1°: HOS-ADL

Range 0-100, higher values=better outcomes; clinically meaningful difference=9points

2°: HOS Sport subscale, NAHS, HAGOS, OHS, iHot-33, EQ-5D-3L, PainDETECT, HADS Hip joint range of motion

Surgery Gp significantly higher mean HOS-ADL scores
After adjusting for baseline HOS-ADL, age, sex and study site,
mean between-group difference was 10 points (<u>6.4</u> – 13.6)
Outcome advantage diminished with age
Hip joint ROM significantly better in Surgery Gp for Flexion only

www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

FAIT RCT Palmer et al 2019 Hip arthroscopy vs Physio & Activity Modification

Outcome: Proportion of participants	Arthroscopic Surgery & Rehabilitation	Physiotherapist-provided Advice & Exercise
Complete data available	89% (n=100)	80% (n=88)
HOS-ADL scores higher than baseline scores	70%	50%
Improvement in HOS-ADL of at least 9 points (clinically important change)	51%	32%
Patient Acceptable Symptom State (PASS) of 87 points on HOS-ADL achieved	48%	19%
Expectation on improvement in the HOS-ADL achieved	31%	15%

Dr. Glison Grimaldi www.dralisongrimaldi.com

45

Palmer 2019 Limitations

- > Used only an ADL score
- Did not present data for sports scores, only group differences
- ➤ Substantial loss to follow up: 11% surgical gp; 20% physio gp
 - risk of bias
- Physiotherapy protocol
 - · lack of detail
 - low number of sessions
 - unknown compliance

Best nonsurgical care??

'We need to talk about current best practice for the non-surgical Mx of FAIS'

Kemp et al 2019

Dr. alison Grimaldi
www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

What advice do we give our patients?

With current evidence ...

PHYSICAL THERAPY INTERVENTIONS FIRST

Work on possible moderators of outcome:

- type and amount of physical activities performed
- lower muscle strength
- altered gait-pattern characteristics
- lower range of motion Van Klij et al 2018

(Ongoing trials required to provide evidence)

47

LOAD MANAGEMENT

Flexion

& F/IR; F/Add combinations Reduce overall exposure to EOR flexion

Minimise:

- repetitive
- sustained
- loaded
- rapid

movement into **EOR** - *Flexion, IR

(Any EOR may be provocative – Abd, Ext)

Minimising impingement

Contemporary Diagnostic & Management Strategies

Considerations for Load Management During Exercise

- Range of Motion
- * Depth
- * Pelvic position
- Leg Placement-abd/ER
- Amount of external load
- Speed of movement
- Volume/frequency
- Alternatives

49

What advice do we give our patients?

With current evidence ...

PHYSICAL THERAPY INTERVENTIONS FIRST

Work on possible moderators of outcome:

- type and amount of physical activities performed
- lower muscle strength
- altered gait-pattern characteristics
- lower range of motion Van Klij et al 2018

(Ongoing trials required to provide evidence)

Contemporary Diagnostic & Management Strategies

EXERCISE THERAPY Aim: Address Impairments & Optimise Joint Protection Reduced Muscle Hip F, ABD, ADD, ER * Variable – individualise Rx Strength Assess & Known Impairments address Influenced by ABD strength Reduced Side Plank deficits >34 seconds = better outcome Endurance specific to the individual Reduced SL Dynamic Single Leg Squat in a manner Balance **Star Excursion Balance Test** that optimises ioint SL Rise Test >16 reps Reduced Functional protection & SL Hop Distance >0.37 m/kg Task Performance minimises = better outcome provocative Alterations in **Lower Peak Hip Extension Angle** joint loading Kinematics & Inc Ant Pelvic Tilt in Step Down Recruitment **Reduced Recruitment Precision** Dr. Alison Grimaldi Freke et al 2016, 2018, Diamond et al 2015, 2016, Kemp et al 2014, 2016, Hatton et al 2014, King et al 2018, Lewis et al 2018 www.dralisongrimaldi.com

51

What advice do we give our patients?

With current evidence ...

PHYSICAL THERAPY INTERVENTIONS FIRST

Work on possible moderators of outcome:

- type and amount of physical activities performed
- lower muscle strength
- altered gait-pattern characteristics

- lower range of motion

Van Klij et al 2018

(Ongoing trials required to provide evidence)

Contemporary Diagnostic & Management Strategies

RANGE GAINING TECHNIQUES?

To address ROM restriction? To reduce Pain?

Known Impairments

Freke et al 2016 SRV: the best available evidence suggests that ROM is not impaired in individuals with symptomatic FAI and should not be the primary target for treatment regimes.

Mosler et al 2018: IR ROM unable to discriminate hips with cam morphology; relatively small mean differences in internal rotation ROM between asymptomatic hips with and without a cam.

3D CT Modeling: Hips with FAI had decreased F, IR & ABD

How accurate are our clinical measures? Mosler et al – IR measured in supine with plastic goniometer at 90° hip flexion

Kubiak-Langer et al 2007

Mosler et al 2018

Dr. alison Grimaldi

53

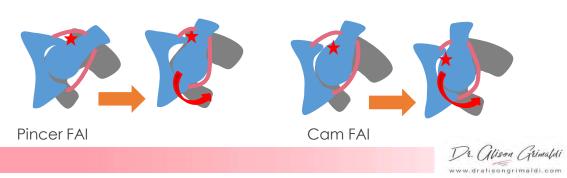
RANGE GAINING TECHNIQUES?

If there is a ROM restriction, do these techniques help? Mansell et al 2018: ≈¾ of the MT & Ex Gp → surgery

MT	Pain with Test or ROM asymmetry	Paired Rx approach for Manual Therapy
Rationale for MT	FABER	Prone FABER MWM; Kneeling self-mobes Fig 4 stretch; Prone FABER self-mobes
	Internal Rotation	IR MWM Half Kneel IR Self-mobes with distraction
	Quadruped Rock	Quadruped MWM Quadruped Self-mobes with distraction

No Re-Ax of ROM performed – benefit obtained?

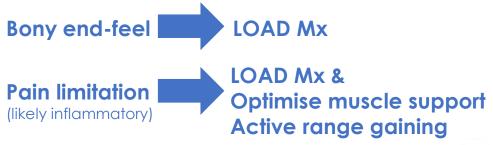
Mansell Protocol: BMC Musculoskelet Disord. 2016;17:60


Contemporary Diagnostic & Management Strategies

RANGE GAINING TECHNIQUES?

Rationale for Range Gaining: *Improve Functional Range* Flexion & IR – If the range restriction is bony, what does manual therapy or stretching achieve?

Increased length in the posterior capsule/ligs?
Allow the cam to move further into the acetabulum?
Is this a good idea?


55

FAI & Instability

FAI is associated with Posterior Hip Instability

– low energy sports-related posterior dislocation
Mayer et al 2016

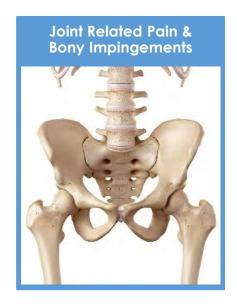
Real time CT Imaging - all FAI subtypes & supraphysiological hip motions can lead to impingement and subluxation Wassilew et al 2013

Contemporary Diagnostic & Management Strategies

FAI Key Points

Cam & Pincer Morphology predisposes to:

- FAI earlier in joint range & concurrent instability
- Rim pathology & FAIS (*Cam; Pincer?)


RCT evidence suggests hips are not 'fixed' by surgery Need for optimisation of physical therapy interventions Address individual impairments + manage joint loads

- Muscle function (more than just strength)
- Kinematics & kinetics movement retraining
- ROM? How? Benefit of passive range gaining techniques is questionable

EDUCATION & EXERCISE

57

ANTERIOR HIP &
GROIN PAIN
Joint Related Pain &
Bony Impingements
Femoral Morphology
Module 1 - Lesson 4

Dr. alison Grimaldi
www.drallsongrimaldi.com

Contemporary Diagnostic & Management Strategies

Vara

Dr. alison Grimaldi

www.dralisongrimaldi.com

Key Morphological Variants Acetabular Capsulo-labral Femoral Deficiency Morphology Morphology Cam Morphology Overcoverage Congenital (FAI) Hypermobility (FAI) Retroversion (FAI) Acquired Coxa Valga/Vara Trauma Dysplasia Coxa Breva *latrogenic* Type I & II Focal overload **Femoral Version** Retroversion Anteversion Dr. alison Grimaldi www.drallsongrimaldi.com

Neck – Shaft Angle

>140°
Coxa

Neck – Shaft Angle

116°-140°
Normal

Mean ≈ 128°

60

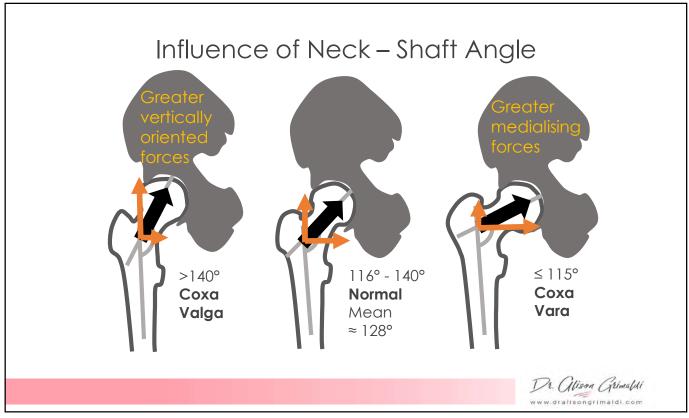
59

Valga

Doherty et al 2008, Mayes et al 2017

Contemporary Diagnostic & Management Strategies

Coxa Breva – Short Neck



Usually associated with Slipped Capital Femoral Epiphysis or Avascular Necrosis

Eidelman et al 2016

61

Contemporary Diagnostic & Management Strategies

Influence of Neck – Shaft Morphology

Coxa Valga & Breva May also increase risk of:

- anterior inferior FAI
- &/or Ischio-femoral Impingement

Gluteus Medius & Minimus

- Mechanically disadvantaged
- Create more vertical force

May have greater impact when presents with other morphological issues, such as acetabular dysplasia

Tibor et al 2013

63

Clinical Indicators of Neck-Shaft Variation

Coxa Valga & Breva

- Valga ABD>ADD ROM
- Ipsilat trunk lean in SLS
- 'Narrow hips' GT's not much wider than pelvis

· Coxa Vara

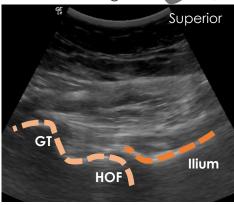
ADD>ABD ROM
 (May experience GT impingement in ABD)
 'Wider hips' – GT's sit relatively wider than

relatively wider than pelvis

Imaging required to assess N-S angle US may give some indication

Dr. alison Grimaldi

Contemporary Diagnostic & Management Strategies



More likely to have higher N-S angle

Less vertical neck
More trochanteric offset

More likely to have lower N-S angle

US: Longitudinal view at lateral hip

65

Neck-Shaft Variation – Implications for Mx

Exercise Considerations

Coxa Valga (Higher N-S angle)

- · Will need higher abductor strength/bulk to support BW
- More likely to need hand support, single stick
- Working into ABD & with wider base is better for medialising forces
- · Care with impact forces, particularly with excessive ADD

Dr. alison Grimaldi
www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

Neck-Shaft Variation – Implications for Mx

Exercise Considerations Coxa Vara

- Will achieve SLS with less abductor bulk/strength
- Inner range ABD may result in GT impingement superiorly +/inferior shear
- * External rotation will assist to clear greater trochanter. Good ER's important, also for inferior support

Elite dancers tend to have higher N-S angles which allows more freedom to move into higher ranges of abduction

Mayes et al 2017

Dr. alison Grimaldi

67

Neck-Shaft Variation – Implications for Mx

Contemporary Diagnostic & Management Strategies

Key Morphological Variants

Femoral Morphology

Cam Morphology (FAI)

Coxa Valga/Vara
Coxa Breva

Femoral Version
Retroversion
Anteversion

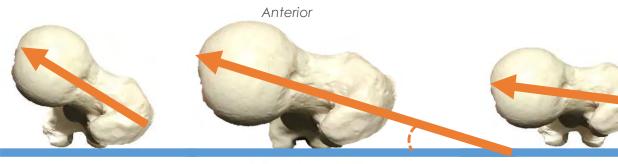
Acetabular Morphology

Overcoverage (FAI) Retroversion (FAI)

Dysplasia
Type I & II

Capsulo-labral Deficiency

Congenital Hypermobility


Acquired
Trauma
Iatrogenic
Focal overload

Dr. Alison Grimaldi
www.dralisongrimaldi.com

69

Femoral Version & Malversion

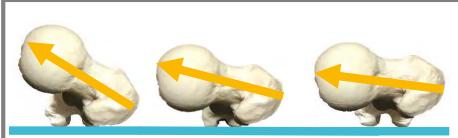
Relationship between femoral neck & femoral condyles

Posterior

Typical average values: 12 - 15° Anteversion

Botser et al 2012 : Low: <10°; Medium: 10° - 22°; High > 22°

Retroversion: <8° Anteversion


Dr. alison Grimaldi www.drallsongrimaldi.com

Contemporary Diagnostic & Management Strategies

Femoral Morphology

Femoral Malversion Retroversion Anteversion

Excess Anteversion

'Normal' Morphology

Retroversion (too little anteversion)

Femoral malversion is highly prevalent (52%) in those with hip pain & FAI or dysplasia

Severe femoral malversion (<0° or >35°) present in 17% or 1 in 6 (Lerch et al 2018)

Dr. alison Grimafdi
www.dralisongrimaldi.com

71

Femoral Morphology

Femoral Version Retroversion

Risk of: Anterior Impingement & Posterior Overload/ Subluxation

Knee neutral Internal Rotation Premature bony impingement in flexion & *IR May increase risk of chondrolabral pathology

Dr. alison Grimafdi

Contemporary Diagnostic & Management Strategies

Clinical Indicators of Retroversion

Interview Features:

- Always stood & walked toes out
- May report hips feel stiff Flexion & IR
 Physical Features:

ER >> Normal ER >> IR

FADDIR: Limited

FABER: Good ROM

Craig's Test <8° at Neutral

Keep an eye out for posterior instability

Dr. alison Grimaldi www.drallsongrimaldi.com

73

Clinical Indicators of Version Category

Physical Features: Uding et al 2019

ROM difference in prone 0°, highest correlation with MRI (r=0.63) Slightly less correlation – IR ROM at 90° (sitting) & Craig's Test (r=0.61) These tests can be used for screening of version category

Suggested:

Rotation ROM more useful than Craig's when high BMI Craig's more useful than ROM when ms spasm or jt contracture Clinical Categorisation: *In those with full hip ROM (age 27-28)*

Excess Anteversion	Normal	Retroversion
Reduced ER in both hip F & Ext IR 20°+ > ER	ER & IR within 20°	Reduced IR in both hip F & Ext ER 20°+ > IR

Souza & Powers 2009, Uding et al 2019

Dr. alison Grimaldi www.dralisongrimaldi.com

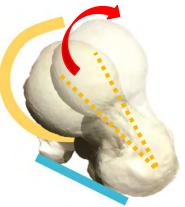
Contemporary Diagnostic & Management Strategies

Femoral Retroversion: Implications for Mx

Manage similarly to FAI

- Minimise time in positions of anterior impingement F/IR
- Don't forget possibility of posterior instability
 - * Need good posterior cuff deep external rotators
- Address individual impairments but avoid adverse joint loads
- Consider whether appropriate to aim to increase range
 You may be pushing the joint past it's physiological range

75

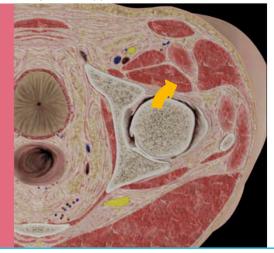

Femoral Morphology

Femoral Version Anteversion

Risk of:
Anterior Overload/
Subluxation &
Posterior
Impingement

Knee neutral

External Rotation


Risk for focal ant instability – extension & ER May increase risk of chondrolabral pathology

Dr. alison Grimaldi

Contemporary Diagnostic & Management Strategies

ER AT THE KNEE

10-15° of ER may cause subluxation in the anteverted hip – Martin Beck 2012

77

Clinical Indicators of Anteversion

Interview Features:

- Hx of 'pigeon toe' walking (not always or can't recall)
- Restriction of hip turnout/cross-legged sitting (unless lax)

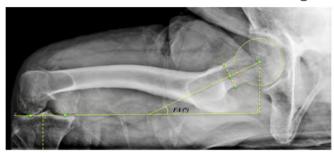
Physical Features: May stand/walk with toes in, if not compensated

IR >> Normal IR >> ER

FADDIR:
May be P but
not limited IR
(unless OA)

FABER: Limited +/apprehension

Craig's Test >15° at Neutral


Dr. alison Grimaldi
www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

Radiology

- Traditionally <u>CT rotation profiles</u> Radiation, cost, time
- More recently <u>MRI rotational profiles</u>
 No radiation but expensive & few clinics perform
- New Modified Budin View Single Plain XRay

Patient sitting
Hip & knee 90° F
Tibia perpendicular to the floor
Hip abducted 30°

Radiographic and CT methods showed excellent agreement Valid and reliable technique. Much reduced radiation, low cost

<u>EOS scans</u> – standing, full lower body, low dose X-Ray – 3D

Boissonneault et al 2017, Deschens et al 2010

Dr. alison Grimaldi

79

Femoral Anteversion: Implications for Mx

Manage similarly to anterior instability

- Minimise time in positions of end range hip extension /ER
- * Need good anterior support deep hip flexors/GMin/anterior GMed
- Address individual impairments but avoid adverse joint loads
- Consider whether appropriate to aim to increase range ER You may be pushing the jt past it's physiological range

Contemporary Diagnostic & Management Strategies

Implications for exercise prescription

Not all exercises appropriate for all hips Take care esp in group classes - screening

Dr. alison Grimaldi
www.drallsongrimaldi.com

81

Femoral Version Key Points

Femoral Anteversion

i)Usually present with:

- Toe-out postures
- ER>IR
- Limited FADDIR
- ii) At risk of:

Anterior impingement & posterior instability in Hip Flexion & IR

- i)Usually present with:
- Fem IR postures (toes in or out)
- IR>ER
- Limited FABER
- ii) At risk of:

Anterior instability& posterior impingement in Hip Extension & ER

Considerations for load Mx, MT & Exercise

Dr. alison Grimaldi
www.drallsongrimaldi.com

Contemporary Diagnostic & Management Strategies

Key Morphological Variants

Femoral Morphology

Cam Morphology (FAI)

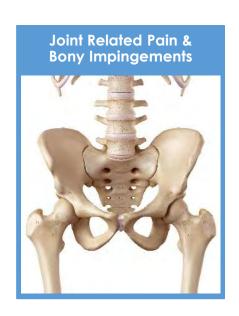
Coxa Valga/Vara
Coxa Rr. va

Femoral Version
Retroversion
Anteversion

Acetabular Morphology

Overcoverage (FAI) Retroversion (FAI)

Dysplasia
Type I & II


Capsulo-labral Deficiency

Congenital Hypermobility

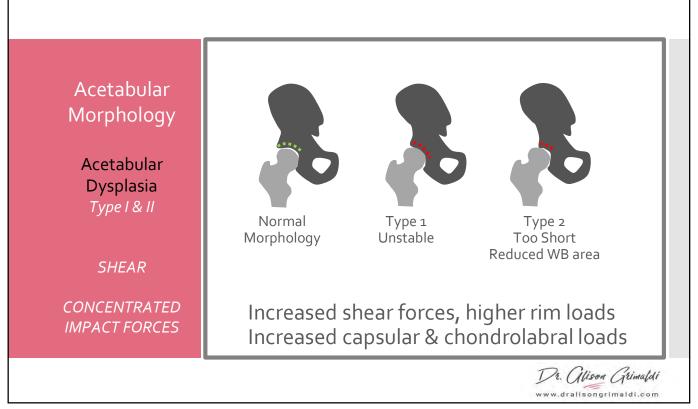
Acquired
Trauma
Iatrogenic
Focal overload

Dr. alison Grimaldi www.dralisongrimaldi.com

83

ANTERIOR HIP & GROIN PAIN
Joint Related Pain & Bony Impingements
Acetabular Dysplasia

Module 1 – Lesson 5



Contemporary Diagnostic & Management Strategies

Key Morphological Variants Acetabular Femoral Capsulo-labral Deficiency Morphology Morphology Cam Morphology Overcoverage Congenital Hypermobility (FAI) (FAI) Retroversion (FAI) Acquired Coxa Valga/Vara Trauma Dysplasia Coxa Breva *latrogenic* Type I & II Focal overload **Femoral Version** Retrove sion Anteversion Dr. alison Grimaldi www.dralisongrimaldi.com

85

Contemporary Diagnostic & Management Strategies

Acetabular Morphology

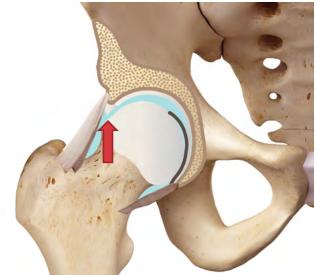
Acetabular Dysplasia *Type I & II* Dysplasia

-Type 1 – Shallow Increased acetabular index (roof angle) Inherently unstable

-Type 2 — Undercoverage Reduced WB area

Shallow

Undercoverage


Dr. alison Grimaldi www.dralisongrimaldi.com

87

Load bearing of the labrum:

Normal: 1-2% Dysplasia: 4-11% (LCEA <20°)

Henak et al 2011

'The labrum plays a larger role in load transfer and joint stability in hips with acetabular dysplasia'

Dr. alison Grimaldi www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

Dysplasia

- •5 x more likely to have capsular laxity (Phillipon 2012)
- •Subject to abnormal shear
- Chondromalacia
- Eventual tearing or detachment of labrum from acetabular rim

OA

Ficat et al 1981, Klaue et al 1991, Dorrell & Catterall 1986, Garbos et al 2004, Agricola et al 2013, Bouyer et al 2016

89

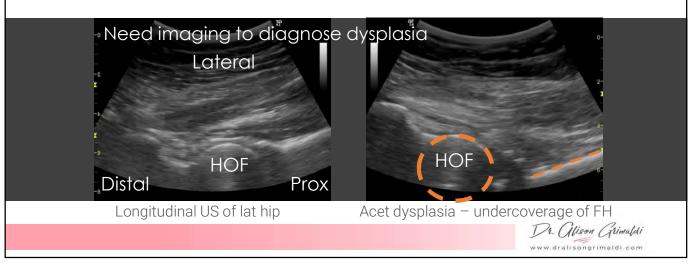
Dysplasia & Hip OA

Mild dysplasia CEA<25° OR for developing OA within 5 years 2.6 -5.5 Agricola et al 2013

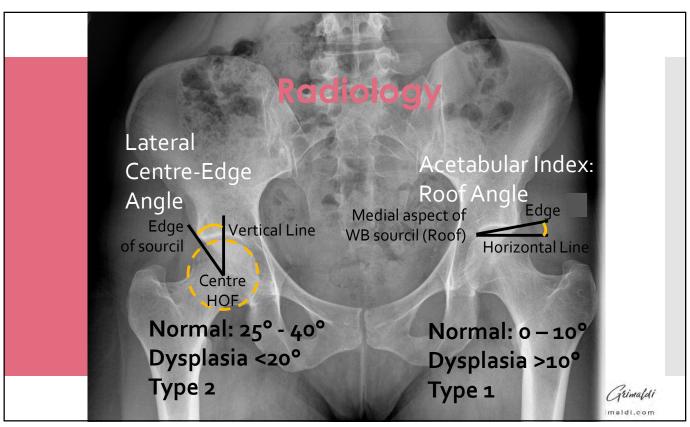
Acetabular Index (Roof Angle): morphology most consistently & strongly associated with:

- · hip OA at baseline
- clinical severity of OA
- radiological progression
- risk of joint replacement

Bouyer et al 2016

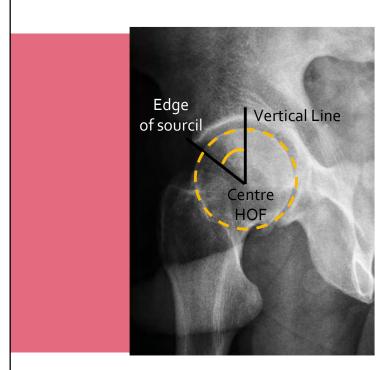

www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies



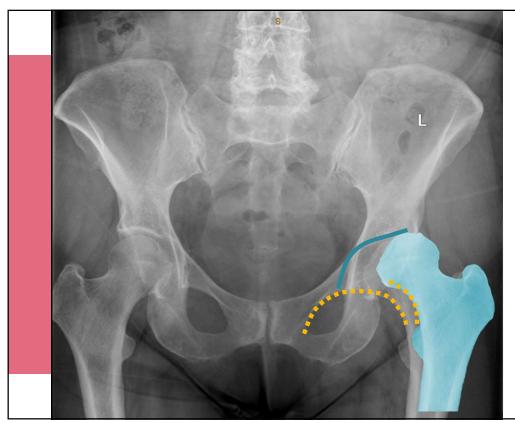
Clinical Indicators of Acetabular Dysplasia

PHx, clicky hips, mechanical signs of instability
Pain on WB & activity, standing, *impact & shear
ROM usually > normal or restricted by pain/apprehension
Usually +ve on FADDIR, FABER & MTT if symptomatic



91

Contemporary Diagnostic & Management Strategies



Anterior Centre Edge Angle

Measured on false profile view **Dysplasia <20°**

Dr. Alison Grimaldi www.dralisongrimaldi.com

93

Broken Shenton Line

Detects superior femoral head migration indicative of acetabular dysplasia >5mm = subluxation

Rhee et al 2011 Jacobsen et al 2005

Dr. alison Grimaldi www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

Acetabular Wall Index

Anterior Wall Index = a/r Posterior Wall Index = p/r

	Dysplastic	Normal	Deep Acetabulum
AWI	0.26	0.35	OC:0.43 RV: 0.42
PWI	1.03	1.13	OC:1.22 RV: 1.02

Dysplastic hips: Global undercoverage **Overcoverage**: Global overcoverage **Retroversion**: High AWI & low PWI

Ant overcoverage + Post undercoverage

Dr. alison Grimaldi
www.dralisongrimaldi.com

95

Global Instability

Global undercoverage

Decreased AWI +/or PWI LCEA <25° +/- subluxation – broken Shenton's line

Wilkin et al 2017

Anterior Instability

Anterior undercoverage

Excessive anteversion of acetabulum
Decreased AWI
Normal LCEA

Dr. Glison Grimaldi www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

Acetabular Dysplasia: Implications for Mx

Load management & exercise

- -Minimise time spent in EOR positions
 - rapid, repetitive, sustained, loaded
- Advice around weightbearing & impact loads
 - Prolonged standing try wider base and avoid ant translation
 - Gait control stride length/hip extension, adduction & impact
- * Optimise global joint stability
 - deep hip flexors, GMin, posterior cuff
- Neuromotor control and graduated strengthening
- Address individual impairments & avoid adverse it loads
- Passive range gaining usually not appropriate
- Pain limited range regained through load Mx & controlled exercise
 optimising control of COR of HOF

97

http://www.davidsfeldmanmd.com

Dr. alison Grimaldi

Contemporary Diagnostic & Management Strategies

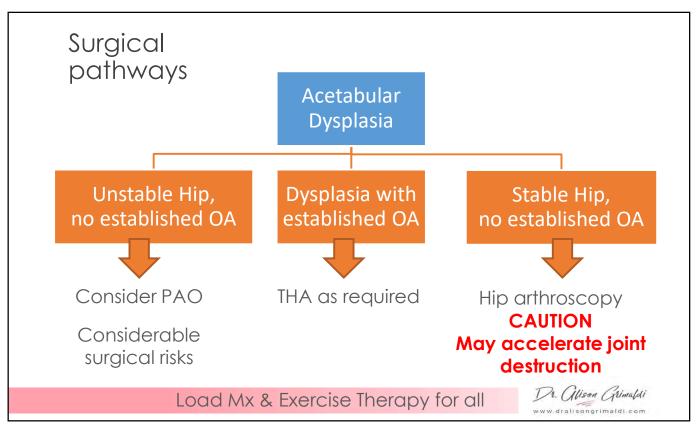
Surgical Indications for PAO?

Massive surgery, not to be undertaken lightly

Joint preservation surgery – not appropriate if significant joint change

Usually reserved for unstable hips

Stability depends on:


- Centre edge angle
- o Roof angle (AI)
- o AWI/PWI
- Neck-shaft angle
- Fem anteversion
- Labral integrity
- Lig Teres integrity
- Capsule-lig integrity

Signs of instability Low CE Angle with:

- Migration of HOF (anterior &/or lateral)
- o High RA (>15 deg)
- o Reduced AWI/PWI
- o High neck-shaft angle
- High anteversion
- Labral hypertrophy
 - compensatory
- o Torn Lig Teres

Dr. alison Grimaldi
www.drallsongrimaldi.com

99

Contemporary Diagnostic & Management Strategies

Utility of Arthroscopy in the setting of dysplasia

Risk of iatrogenic instability associated with

- Joint distraction
- Capsulotomy and/or inappropriate capsular Mx
- · Labral insufficiency/debridement
- ·Ligamentum teres attenuation/debridement
- Disruption of vacuum effect
- · Iliopsoas release

compromise joint homeostasis & can perpetuate hip instability

Adler & Giordano 2019

101

Utility of Arthroscopy in the setting of dysplasia

Best arthroscopic outcomes might be achieved with

- · minimalist techniques
- minimised traction times
- · labral preservation
- chondral regeneration techniques
- ligamentum teres reconstruction (still in early phase of development as a surgical technique)
- Limited capsular opening and repair after capsulotomy, capsular plication

Adler & Giordano 2019

Contemporary Diagnostic & Management Strategies

Utility of Arthroscopy in the setting of dysplasia

Those with:

- •LCEA < 20
- Broken Shenton Line
- •Femoral neck-shaft angle of >140°
- Areas of grade 4 chondral lesions
- BMI > 23

Are poor candidates for hip arthroscopy

Adler & Giordano 2019

103

Acetabular Dysplasia Key Points

Acetabular dysplasia:

- is a deficiency of the acetabulum
- -increases the risk of instability
- increases the risk of chondrolabral damage
- predisposes to ligamentum teres injury/rupture
- increases need for muscular support

Defining acetabular shape is more complex than a simple LCEA Anterior undercoverage & instability may exist in those with a normal LCEA

Many considerations around surgical interventions

Contemporary Diagnostic & Management Strategies

Key Morphological Variants

Femoral Morphology

Cam Morphology (FAI)

Coxa Valga/Vara
Coxa Breva

Femoral Version

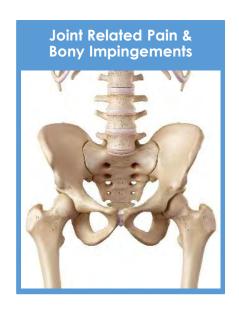
Retrove sion

Anteversion

Acetabular Morphology

Overcoverage (FAI) Retroversion (FAI)

Dysplasia
Type 1 2 11


Capsulo-labral Deficiency

Congenital Hypermobility

Acquired
Trauma
Iatrogenic
Focal overload

Dr. Glison Grimaldi
www.dralisongrimaldi.com

105

ANTERIOR HIP &
GROIN PAIN
Joint Related Pain &
Bony Impingements
Capsulolabral Deficiency - Part 1

Module 1 – Lesson 6

Dr. alison Grimaldi
www.drallsongrimaldi.com

Contemporary Diagnostic & Management Strategies

Key Morphological Variants

Femoral Morphology

Cam Morphology (FAI)

Coxa Valga/Vara
Coxa Brr va

Femoral Version

Retroversion

Anterersion

Acetabular Morphology

Overcoverage (FAI) Retroversion (FAI)

Dysplasia
Type 8

Capsulo-labral Deficiency

Labral Deficiency

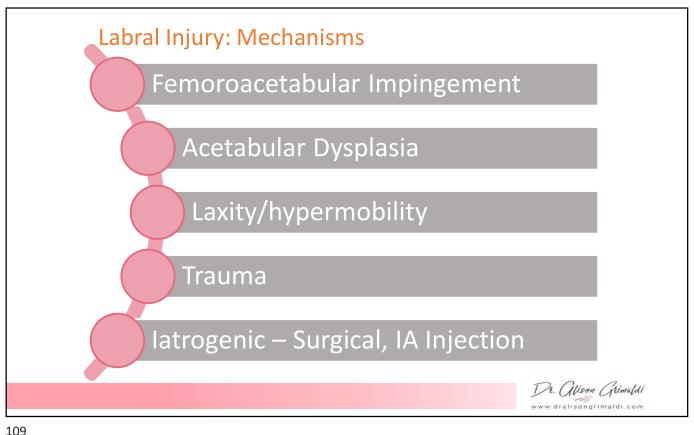
Congenital Hypermobility

Acquired Cap-lig
Deficiency
Trauma
Iatrogenic
Focal overload

Dr. Glison Grimaldi www.drallsongrimaldi.com

107

Labral Deficiency


Acquired
Trauma
Focal
overload
Iatrogenic

Dr. alison Grimaldi
www.drallsongrimaldi.com

Contemporary Diagnostic & Management Strategies

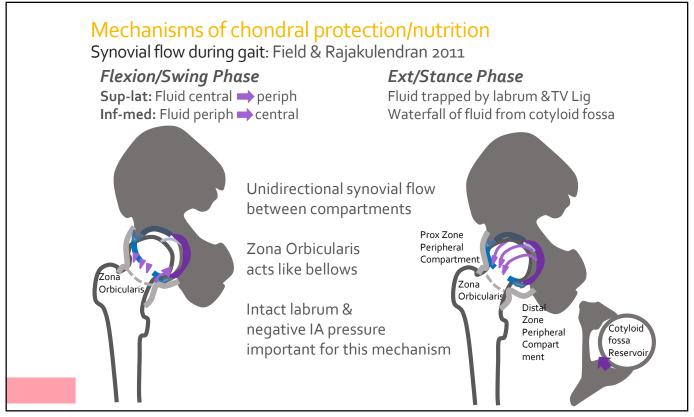
Does it matter?

Is the labrum importan t?

Dr. alison Grimaldi www.drallsongrimaldi.com

Contemporary Diagnostic & Management Strategies

Deepens socket Mechanisms of chondral protection


Important role in vacuum effect, negative IAP
Protects cartilage by trapping intra-articular & interstitial fluid
Proprioceptive role

Ferguson et al 2000, 2003, Henak et al 2011, Ranawat & Kelly 2005

111

Contemporary Diagnostic & Management Strategies

Labral injury/debridement: Implications

Labrectomy

- cartilage consolidation increased 21% due to lack of pressurized fluid
- increased shear stresses
- mean distraction force reduced by 70% with either partial or full resection

Labral tear

- IA fluid pressurization reduced by 25% (50% by partial resection)
- distraction force reduced by 24%
- increased FH translation and rotation

Bsat et al 2016, Ferguson et al 2000,2003, Nepple et al 2014, Philippon et al 2014

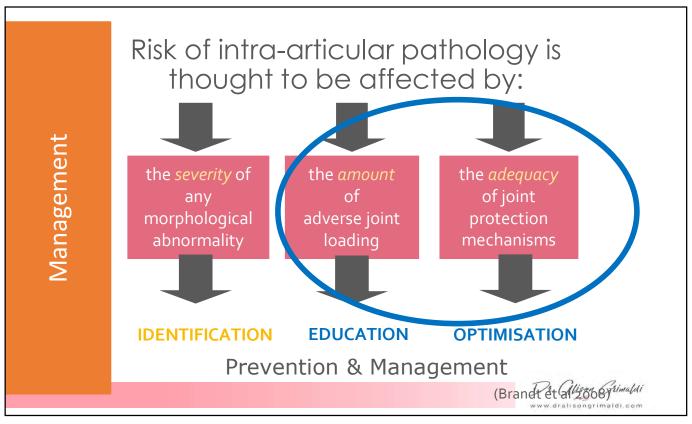
113

Clinical Indicators & Mx of Labral pathology

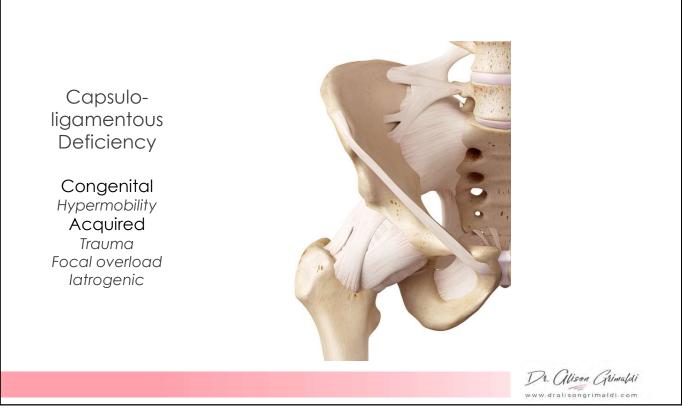
Hip-joint related pain – deep anterior - anterolateral Clinical tests best for ruling out joint pathology - FADDIR

Do we need imaging?

Will visualisation of a labral tear on imaging indicate that this pathology is the source of pain?


Will surgery 'fix' the labrum?

Will surgery provide superior outcomes to physical therapy interventions?



Contemporary Diagnostic & Management Strategies

115

Contemporary Diagnostic & Management Strategies

Congenital Hypermobility - Terminology

Hypermobility Spectrum Disorder (HSD):

Individuals with hypermobility-related problems that do not have hEDS or any other Heritable Disorder of Connective Tissue (HDCT)

Hypermobile Ehlers-Danlos Syndrome (hEDS):

Individuals who fulfill each of 3 hEDS domains:

Domain1: The presence of generalized joint hypermobility

Domain 2: At least 2 of:

(A) skin or fascia signs; pelvic floor concerns; Marfanoid features

(B) a family history

(C) ≥ 1 of the following:

- MSK pain in ≥ 2 limbs recurring daily for ≥3 months OR

- Widespread pain for ≥3 months OR

- Recurrent, atraumatic dislocations

Domain 3: Absence of other underlying Heritable CT Disorders

Hypermobility Syndromes Association

117

Cong Clinical Indicators of Hypermobility

Hypermobilit

У

1. Can you now (or could you ever) place your

hands flat on the floor without bending your

knees?

A Five Part Q to Screen

2. Can you now (or could you ever) bend your thumb to touch your forearm?

for

3. As a child did you amuse your friends by

contorting your body into strange shapes or

Hypermobilit could you do the splits?

y

4. As a child or teenager did your shoulder or kneecap dislocate on more than 1 occasion?

Spectrum Disorders

5. Do you consider yourself double-jointed?

2 or more positives have been shown to detect JH with 85% sensitivity and 90% specificity

(Domain 1 Screening

Hakim & Grahame 2003

Test)

Dr. alison Grimaldi

Contemporary Diagnostic & Management Strategies

Ability to:	Image L R Bo
Passively dorsiflex the 5 th MCP joint ≥	90° 1 1
Oppose the thumb to the volar aspect of the ipsilateral forearm	1 1
Hyperextend the elbow ≥ 10°	1 1
Hyperextend the knee ≥ 10°	1 1
Place hands flat on the floor without bending the knees	1

119

Local Implications of Hypermobility

Capsular laxity leads to microinstability of the hip ie:

- significant increase in joint rotation
- significant increase in femoral head translation
- abnormal movement path of femoral head centre

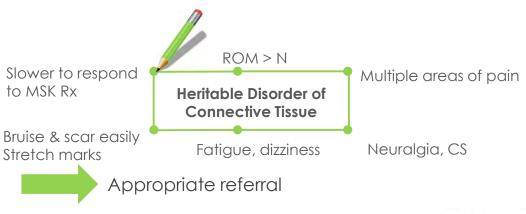
Leads to abnormal femoro-acetabular contact Increased chondro-labral loads Increased risk of joint degeneration

Han et al 2018 AJSM

Contemporary Diagnostic & Management Strategies

Wider potential impact of hypermobility

- 1. Isolated or widespread MSK symptoms & loss of physical function
- 2. Persistent pain & chronic fatigue
- 3. Other associations with:
- CV symptoms & dysautonomia (tachycardia, hypotension, syncope)
- Gut dysfunction (hernia, reflux, constipation, irritable bowel)
- Myopia, astigmatism
- Pelvic floor weakness, rectal and/or uterine prolapse
- Anxiety disorders, such as panic disorder and agoraphobia.
- **4. Heritable CT disorders may also explain:** Multiple fractures, poor wound healing, cataracts, retinal detachment, heart valve disease, arterial vascular dissection / aneurysm, spontaneous rupture of viscera.


hypermobility.org/professionals-section

121

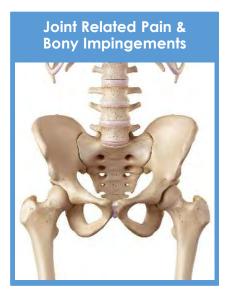
Listen out for the symptoms

Contemporary Diagnostic & Management Strategies

HSD, hEDS: Implications for Mx

In the Mx of MSK-related pain in HSD, hEDS:

- optimise local joint support prior to general strength
- may be slower to recover esp post-surgical
- may be more likely to develop CS, CRPS, neuralgia
- will fatigue more quickly & take longer to recover
- pacing is important



123

Key Morphological Variants Femoral Acetabular Capsulo-labral Morphology Deficiency Morphology Cam Morphology Overcoverage Labral Deficiency (FAI) (FAI) Retroversion (FAI) Congenital **Hypermobility** Coxa Valga/Vara Dysplasia Cox Br va **Acquired Cap-lig** Type \& Deficiency Femoral Version Trauma Retroversion latrogenic Ante ersion Focal overload Dr. Alison Grimaldi www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

ANTERIOR HIP & GROIN PAIN
Joint Related Pain & Bony Impingements
Capsulolabral Deficiency - Part 2

Module 1 - Lesson 7

125

Key Morphological Variants

Femoral Morphology

Cam Morphology

(FAI)

Coxa Valga/Vara

Coxa Breva

Femoral Version
Retroversion
Anteve sion

Acetabular Morphology

Overcoverage (FAI)

Retrove sion (FAI)

Dysplasia
Type | & |

Capsulo-labral Deficiency

Labral Deficiency

Congenical

Hypermobility

Acquired Cap-lig
Deficiency
Trauma
Iatrogenic
Focal overload

Contemporary Diagnostic & Management Strategies

Acquired secondary to:

• Trauma – EOR overload or

Capsuloligamentou

Focal Overload

distraction force

s Disorders

- 2° to Dysplasia or Fem anteversion

Acquired Trauma Focal overload *latrogenic* - Functional

overload

• latrogenic – Induced surgically

127

Anterior Ligaments

Ligaments reinforce ≈ 60% capsule

lliofemoral Ligament

Limits

- Lateral Arm

Ext, ER, IR in Ext

- Medial Arm

Ext, ER

Pubofemoral Ligament

ER * in Ext Abduction

Focal overload in Ext, ER, Abd

Martin et al 2008, Sato et al 2012

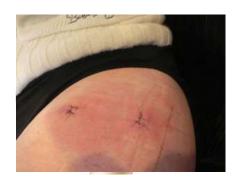
Dr. alison Grimaldi www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

Zona Orbicularis

Wraps circumferentially around femoral neck Important role in synovial flow Acts like an hourglass Resists distraction

- Swing phase of gait
- Kicking


Ito et al 2009

Dr. alison Grimaldi
www.drallsongrimaldi.com

129

latrogenic Capsular Damage

T capsulotomy is common
Larger opening for osteoplasties
Many surgeons do not repair
Some perform capsulectomy
Post scope: may be left with
absence of portion of IFL &
anterior ZO

Beware! It's possible for a patient's hip to sublux or dislocate anteriorly post hip arthroscopy

Chang et al 2013, Matsuda 2009, Ranawat et al 2009, Sansone et al 2013, Wylie et al 2016, Yeung et al 2017

Contemporary Diagnostic & Management Strategies

latrogenic Instability Post Scope

Stability post-scope reduced by:

- Labral debridement
- Acetabular rim trimming
- Capsulotomy(damage to IFL)
- Prolonged traction (stretching capsule/ligs)
- Iliopsoas tendon release

Sansone et al 2013, Matsuda 2009, Ranawat et al 2009

131

Effects of capsular repair post scope

Compared outcomes post scope with fully repaired vs partial repair of capsule

Improved outcomes if capsule is completely repaired:

- Patients who underwent CR of the hip capsule demonstrated superior sport-specific outcomes
- Revision rate: 13% in the PR group, 0 in full repair group

Repair critical for anterior stability in hip Ext & ER

Frank et al 2014

Contemporary Diagnostic & Management Strategies

Implications for Management

Ongoing hip pain post scope

Consider possible instability esp if:

No capsular repair

Labral debridement

Acetabular rim trimming

Capsulotomy/ damage to IFem Lig

Prolonged traction/stretching capsule/ligs

lliopsoas tendon release

Global Hypermobility

Optimise dynamic stability Some require surgical repair

133

Clinical Indicators of Focal Anterior Instability

Interview Features:

Pt may report, clicking, popping, heaviness of leg, giving way, reduced balance

Physical Features:

Axial

Distraction

Apprehension

Increased ROM No firm end-feel Poor recoil

Relocation Test

Less apprehension

Less pain Increased ROM **FABER**

Pain/Apprehension SN:54; SP:90 Ranawat et al 2017

Dr. Alison Grimaldi www.dralisongrimaldi.com

Ranawat et al 2017, Reiman et al 2019

Contemporary Diagnostic & Management Strategies

Clinical Indicators of Focal Anterior Instability

Physical Features: Diagnostic Utility Study

Apprehension/HE-ER Test

AB-HE-ER Test

Reproduction of the patients anterior hip pain
Arthroscopically identified hip instability as a reference standard
AB-HEER test – moderately useful for ruling out instability
Prone Instability Test – moderately useful for ruling in anterior instability
(Low quality evidence, one study only)

Hoppe et al 2017, Reiman et al 2019

Dr. alison Grimaldi www.dralisongrimaldi.com

135

Radiological Indicators of Capsular Insufficiency

- Vacuum sign on FlouroscopyCanham et al. 2016
- Capsular Laxity on MRA
- 1. thinning of the joint capsule (<3 mm) lateral to the zona orbicularis (or absence post-op)
- 3. widening of the anterior hip joint recess (>5 mm)

Magerkurth et al. 2016

Dr. alison Grimaldi www.drallsongrimaldi.com

Contemporary Diagnostic & Management Strategies

Ligamentum Teres

Originates from transverse acetabular ligament Inserts into Fovea Capitis of femoral head

Cerezal et al 2010, Radio Graphics; 30:1637-1651

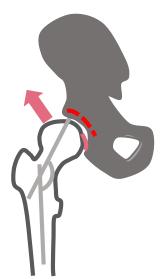
137

Ligamentum Teres

- Proprioception (still conjecture) & blood supply
- · Possible role in synovial flow 'windscreen wiper effect'
- Secondary restraint (to capsular ligs), loaded particularly in extremes of range – F/ER; Ext/IR
- Forms a sling under HOF in deep Flexion-Abd

Prevents subluxation of HOF

Kivlan et al 2013, Martin et al 2012, 2013, Philips et al 2012


Contemporary Diagnostic & Management Strategies

Ligamentum Teres – Mechanism of Injury?

Often associated with:
Bony factors
Neck-shaft angle >140°
Centre edge angle < 23°
Higher roof angle >13°
FAI

Soft tissue factors Hypermobility

Increased shear force

Impingement & associated subluxation forces

Martin et al 2012, Botser et al 2011, Devitt et al 2017, O'Donnell & Arora 2017

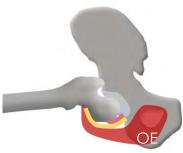
Dr. Glison Grimaldi
www.drallsongrimaldi.com

139

Ligamentum Teres - MOI?

Inferior shear in F/AB especially with

- -superior impingement
- -inferior acetabular insufficiency
- -capsular laxity



Dr. Glison Grimaldi
www.drallsongrimaldi.com

Contemporary Diagnostic & Management Strategies

Ligamentum Teres – MOI?

Be suspicious of LT injury in those with traumatic OE tear, esp if slow to settle. LT tear often missed on MRI

May be reason for failed nonsurgical rehab for labral pathology Kaya et al 2014

141

Ligamentum Teres Tears in Athletes

Frequency of LT tears-imaging:

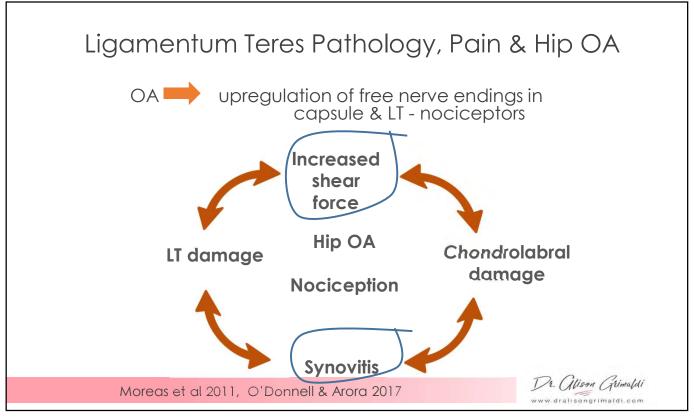
Dancers 55 % Other Athletes 22 % (Dancers also higher % with AD, borderline AD & coxa valga)

Dancers had larger OE than non-dancing athletes Positive adaptation? Mayes et al 2016, 2017, 2018

LT damage at hip arthroscopy:

 \approx 70% of athletes with FAI vs 50% of others (usually PT Tear).

Higher incidence in athletes due to higher ranges & forces?


Botser et al 2011, Devitt et al 2017, O'Donnell & Arora 2017

Dr. Glison Grimaldi www.drallsongrimaldi.com

Contemporary Diagnostic & Management Strategies

143

Clinical Indicators of Ligamentum Teres Tear

Interview Features:

Take a careful Hx re trauma & sporting activities – forced/repetitive EOR; F/ABD/Rotn; distraction/drag When symptomatic, often irritable hip, slower to settle Often co-exist with chondro-labral damage & synovitis May report mechanical symptoms, signs of instability, particularly in the presence of reduced bony or capsulo-ligamentous stability.

Physical Features: +ve Lig Teres test:

Hip Flexion 70°
Take to full Abd, then back 30°
Full IR & ER
Positive test is pain reproduction

O'Donnell 2013, 2017, 2018

www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

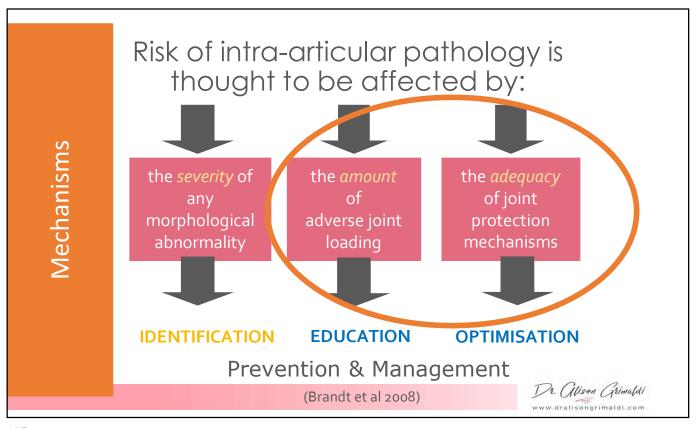
Management of the patient with hip pain & capsulolabral deficiency

Load Management

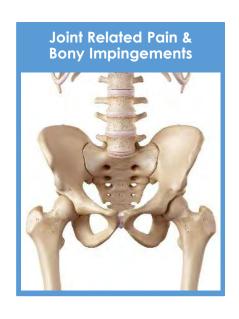
- Minimise time spent in end range positions *Ext/ER; F/Abd
- Listen to joint response to load want to avoid/minimise any inflammatory processes
 - Night ache, morning stiffness
 - FABER can be useful barometer

Exercise

- * Need good local muscular support
 - · deep hip flexors, GMin, DER's
- Address individual impairments while avoiding adverse joint loads

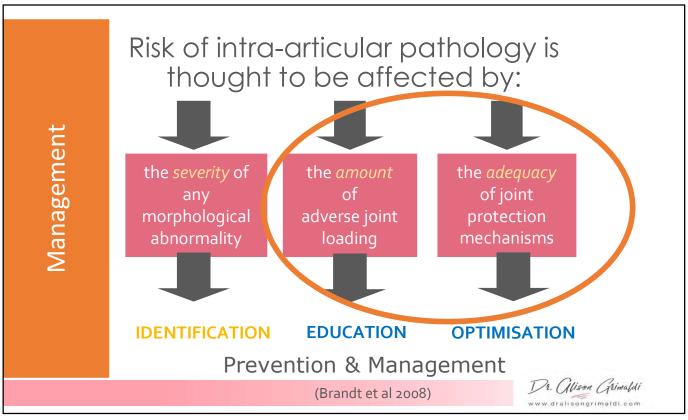


145


Key Morphological Variants Femoral Acetabular Capsulo-labral Morphology Deficiency Morphology Cam Morphology Overcoverage Labral Deficiency (FAI) (FAI) Retroversion (FAI) Congenital **Hypermobility** Coxa Valga/Vara Dysplasia Cox Br va Acquired Cap-lig Type \ & Deficiency Femoral Version Trauma Retroversion latrogenic Ante ersion Focal overload Dr. Alison Grimaldi www.dralisongrimaldi.com

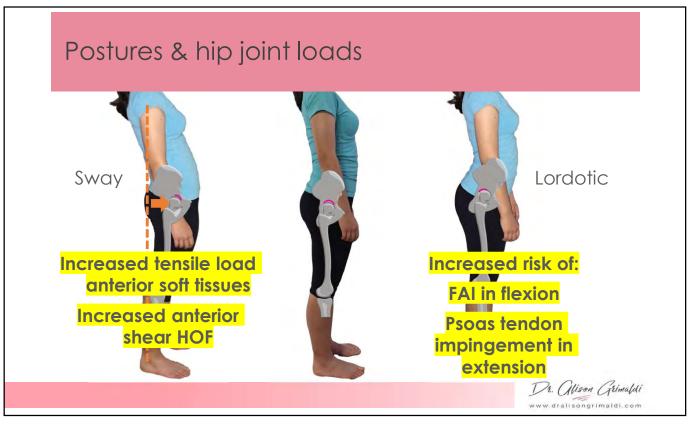
Contemporary Diagnostic & Management Strategies

147


ANTERIOR HIP & GROIN PAIN
Joint Related Pain & Bony Impingements

Adverse Loading & Joint Protection Mechanisms Module 1 – Lesson 8

Contemporary Diagnostic & Management Strategies



149

Contemporary Diagnostic & Management Strategies

151

Contemporary Diagnostic & Management Strategies

Anterior hip joint loads in gait

Excessive hip extension results in increased anterior joint forces

Gait: Ant hip loads increase ~20%BW, with 2° increase in hip extension

Lewis et al 2007, 2009, 2010

153

Anterior joint loads in gait

Walking with swayback posture

- higher peak hip extension angle
- higher hip flexor moment
- increased force transmission through anterior hip

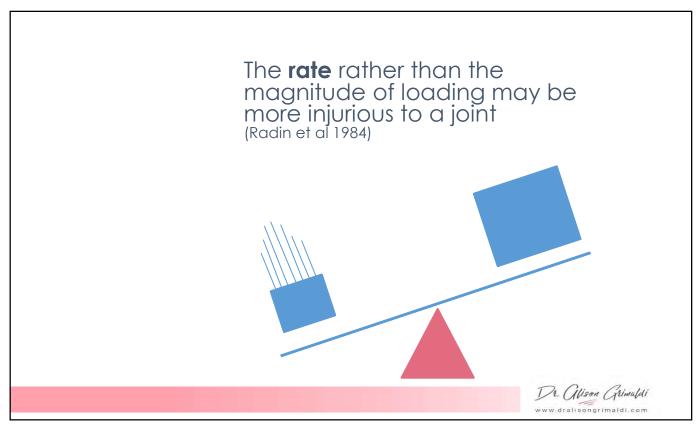
Lewis & Sahrmann 2015

Contemporary Diagnostic & Management Strategies

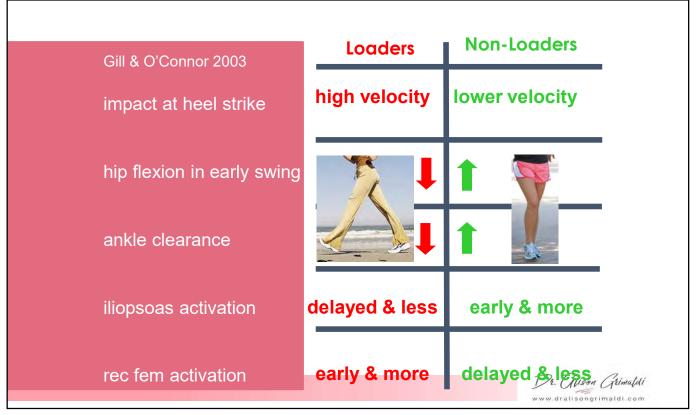
Implications for Mx

Posture & Gait Retraining

Changing posture during gait has been shown to have an immediate and lasting effect on hip pain and functional ability


Case study

Lewis & Sahrmann 2015



155

Contemporary Diagnostic & Management Strategies

157

Contemporary Diagnostic & Management Strategies

Hip loads influenced by:

- Cadence
- · Stride length

Heiderscheit et al 2010

159

Increasing cadence by 10%, reduces:

- · step length
- COM vertical excursion
- braking impulse
- energy absorbed by hip (& knee)
- peak hip adduction
- hip adduction & IR moments
- & late swing phase activation of GMax & GMed

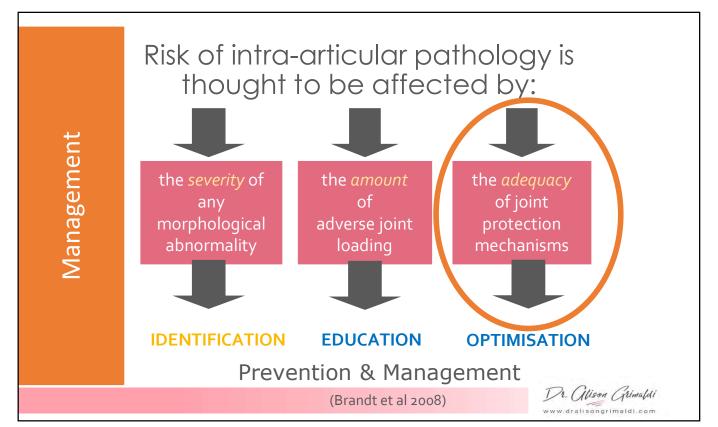
Heiderscheit et al 2010, Chumanov et al 2012

* If appropriate for the individual

Barton et al 2016, BJSM for RV of running retraining

Dr. alison Grimaldi

Contemporary Diagnostic & Management Strategies


Unnecessa ry end range loading

Dr. alison Grimaldi www.dralisongrimaldi.com

161

Contemporary Diagnostic & Management Strategies

Muscles with primary joint-protective function

Iliopsoas
Iliocapsularis
Gluteus Minimus
Deep External
Rotators

© Primal Pisimes 2009

Dr. Alison Grimaldi

www.dralisongrimaldi.com

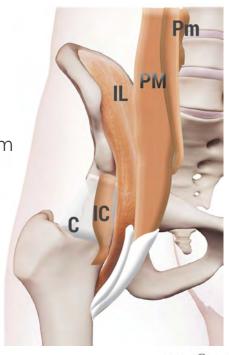
163

Protective effect of hip flexors

Lewis, Sahrmann, Moran 2009 Weakness of IP will increase joint loading esp in Ext

Reduced RF, Sart, & TFL only increased by <u>16.4 units</u>
Reduced IP force increased joint force by <u>140 units</u>

Weakened IP:



Contemporary Diagnostic & Management Strategies

lliocapsularis

Hypertrophy evident in acetabular dysplasia Long attachment to ant-med capsule 73.8(±27.3); 16.1(±4.4)mm

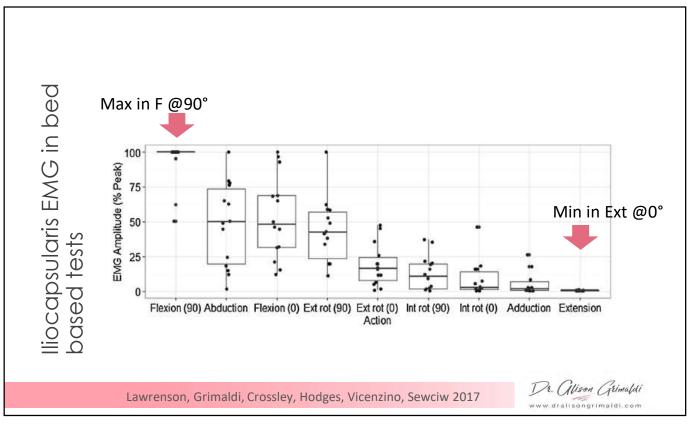
Walters et al 2014, Ward et al 2000



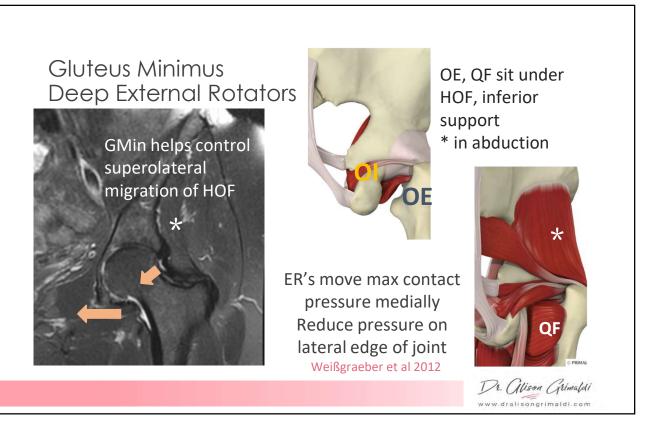
165

lliocapsularis

Important for capsular tensioning & perhaps 'lift' into flexion



Walters et al 2014, Ward et al 2000



Contemporary Diagnostic & Management Strategies

167

Contemporary Diagnostic & Management Strategies

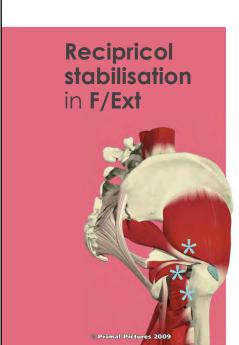
Co-contraction
Ant & Post Cuff in
ABDUCTION

DEEP ROTATORS & JOINT PROTECTION

Deep IR's active GMin Semciw et al 2014

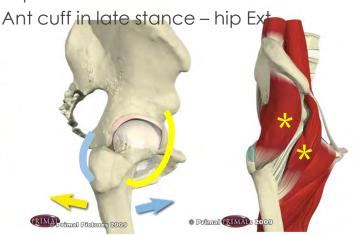
+

Deep ER's active OI & QF


Hodges et al 2014

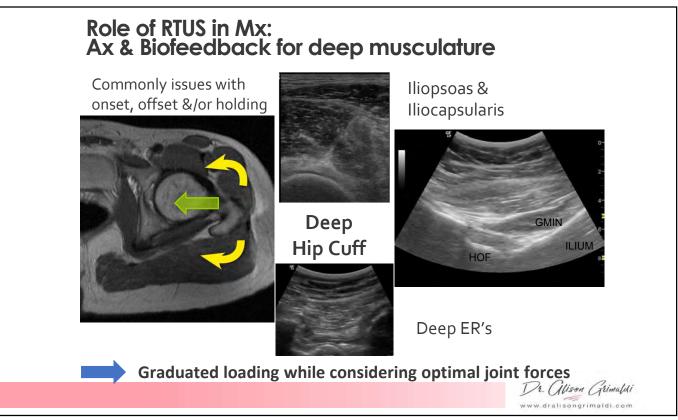
In ABD, superior capsule comes off tension Increased requirement for muscle to maintain COR

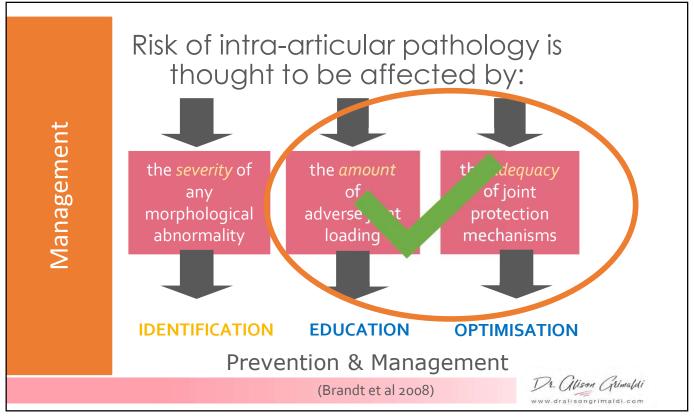
Co-contraction should approximate HOF & help prevent superior migration of HQF


Dr. alison Grimaldi www.dralisongrimaldi.com

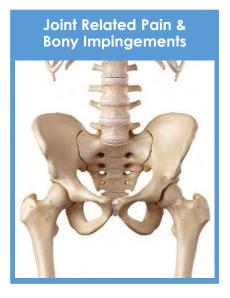
169

STABILITY/JOINT PROTECTION IN GAIT:


Post cuff in early stance – hip F with impact load


Andersson et al 1997: Iliopsoas active in end stance phase; Semciw et al 2014, 1991: Iliopsoas active in end stance phase; Semciw et al 2014, 1991: Iliopsoas active in end stance phase; Semciw et al 2014, 1991: Iliopsoas active in end stance phase; Semciw et al 2014, 1991: Iliopsoas active in end stance phase; Semciw et al 2014, 1991: Iliopsoas active in end stance phase; Semciw et al 2014, 1991: Iliopsoas active in end stance phase; Semciw et al 2014, 1991: Iliopsoas active in end stance phase; Semciw et al 2014, 1991: Iliopsoas active in end stance phase; Semciw et al 2014, 1991: Iliopsoas active in end stance phase; Semciw et al 2014, 1991: Iliopsoas active in end stance phase; Semciw et al 2014, 1991: Iliopsoas active in end stance phase; Semciw et al 2014, 1991: Iliopsoas active in end stance phase; Semciw et al 2014, 1991: Iliopsoas active in end stance phase; Semciw et al 2014, 1991: Iliopsoas active in end stance phase; Il

Contemporary Diagnostic & Management Strategies



171

Contemporary Diagnostic & Management Strategies

ANTERIOR HIP &
GROIN PAIN
Joint Related Pain &
Bony Impingements
Extra-articular Bony Impingement
Module 1 - Lesson 9

173

AllS or Subspine Impingement

Prominent AIIS or subspine region impinges against femoral neck

Nakano et al 2017, Carton & Filan 2016

Contemporary Diagnostic & Management Strategies

Alls Prominence

Primary: Associated with retroversion

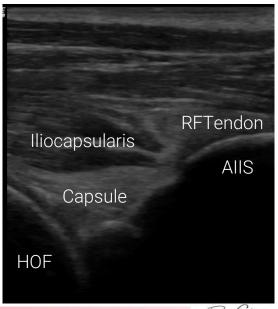
Secondary:

- -Avulsion injury
- -Traction apophysitis
- Pelvic osteotomy

Nakano et al 2017, Carton & Filan 2016

175

Potential Implications of a Prominent AIIS


Soft tissues impinged in hip flexion may become painful and damaged over time:

Rectus femoris tendon (RFT) & prox muscle

lliocapsularis

Capsule

Fat pad at head-neck junction?

Dr. alison Grimaldi www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

Clinical Indicators of AllS Impingement

Interview Features:

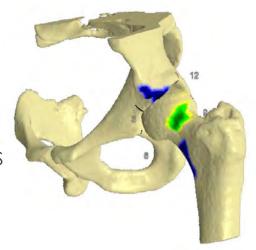
- Will present similarly to FAI Syndrome
- Pain usually deep anterolaterally in deep flexion; F/IR
- May report restricted ROM
- May have a Hx of 'Hip Flexor Injury', avulsion, apophysitis, PAO, participation in high load sports

Physical Assessment Features:

Pain & restriction FADDIR +ve **EOR Flexion**

Pain/weakness on resisted ASLR

TOP AllS



177

Radiology

- XRay: AP pelvis & false-profile view

- CT 3D Reconstruction Dynamic animation may reveal impingement is AIIS rather than FAI – implications for surgical intervention

Contemporary Diagnostic & Management Strategies

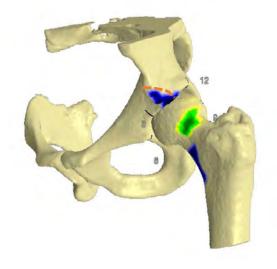
AllS/Subspine Impingement: Implications for Mx

Load Mx:

 Similar to FAIS – minimise exposure to impingement

Exercise Therapy:

- Control excessive anterior pelvic tilt
 - Improve abs (RA) and lengthen hip flexors
- Graduated reloading of hip flexors
 - *Iliocapsularis
 - Rectus Femoris, once good deep flexor function

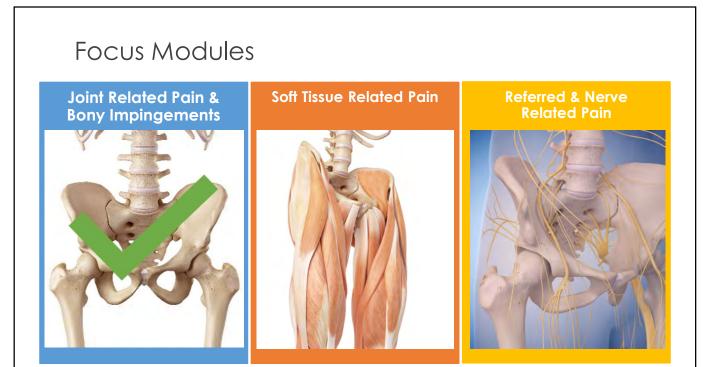

179

AllS/Subspine Impingement: Surgical Decompression

May involve:

Partial resection or iatrogenic damage and delayed rupture of Rec Fem &/or llicapsularis origin

Extensive release of anterior capsule from acetabular rim



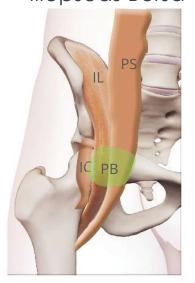
Carton & Filan et al 2016

Dr. alison Grimaldi www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

181

ANTERIOR HIP &
GROIN PAIN
Soft Tissue
Related Pain
Muscle, Tendon, Bursa
Module 2 - Lesson 1



Dr. alison Grimaldi www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

Muscles, Tendons, Iliopsoas Bursa

PS: Psoas; IL: Iliacus; IC: Iliocapsularis; P: Pectineus; AL: Adductor Longus; Adductor Brevis; AM:Adductor Magnus; G: Gracilis; EO: External Oblique; RA: Rectus Abdominis; RF: Rectus Femoris; SA: Sartorius

PB: Psoas/Iliopsoas/Iliopectineal Bursa – sits between iliopsoas & hip joint

Dr. alison Grimaldi

183

Acute adductor injuries in athletes

Of 111 injuries (71 athletes):

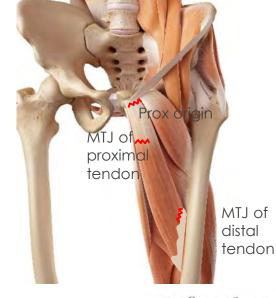
46 isolated & 25 multiple
62 adductor longus
18 adductor brevis
17 pectineus
9 obturator externus
4 gracilis
1 adductor magnus

'Acute adductor injuries generally occur in isolation from other muscle groups'

Serner et al 2018

Contemporary Diagnostic & Management Strategies

Acute adductor injuries in athletes


Adductor Longus Injury:

Most common – 87% of injuries 37 isolated injuries 23(92%) of multiple injuries

Location of Injury:

Proximal tendon origin (26%)

- 12/16 complete avulsions MTJ of the proximal tendon (26%) MTJ of the distal tendon (37%)

Dr. alison Grimaldi

www.dralisongrimaldi.com

Serner et al 2018

MTJ: Musculotendinous junction

185

Mechanism of Injury – Hip Adductors

Injury situation	Total	Adductor longus	Adductor brevis	Pectineus	Obturator externus	Gracilis	Adductor magnus
Kicking	17 (24)	15 (24)	4 (22)	3 (18)	3 (33)	1 (25)	1 (100)
Change of direction	17 (24)	14 (23)	3 (17)	4 (24)	1 (11)	-	-
Reaching/stretch	12 (17)	12 (19)	4 (22)	3 (18)	2 (22)	1 (25)	-
Running/Sprinting	8 (11)	7 (11)	2 (11)	3 (18)	-	2 (50)	-
Jumping	7 (10)	7 (11)	2 (11)	2 (12)	-	-	-
Tackling	7 (10)	5 (8)	1 (6)	1 (6)	2 (22)	-	-
Sliding	2 (3)	2 (3)	1 (6)	1 (6)	-	-	-
Pulled by opponent	1 (1)	-	1 (6)	-	1 (11)	-	-

Data: n (%). n = 71. In athletes with multiple adductor injuries, the injury situation is reported for each involved muscle.

Serner et al 2018

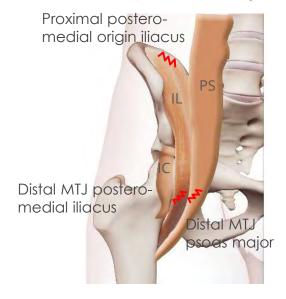
Dr. alison Grimaldi

Contemporary Diagnostic & Management Strategies

Acute hip flexor injuries in athletes

Of 33 injuries:

16 rectus femoris 12 iliacus 7 psoas major 4 sartorius 1 TFL


PS: Psoas; IL: Iliacus; IC: Iliocapsularis; MTJ: Musculotendinous junction

Serner et al 2018

187

Acute hip flexor injuries in athletes

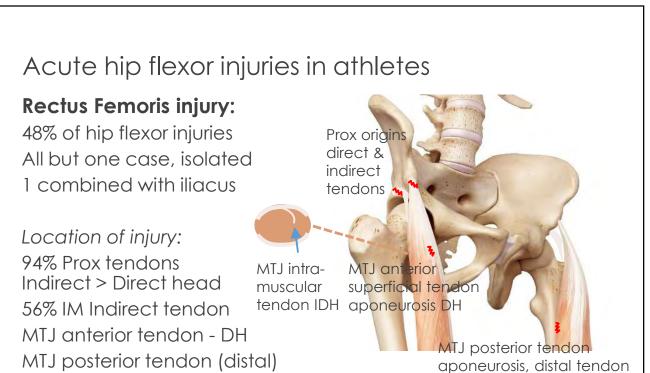
lliopsoas injury:

40% of hip flexor injuries
Iliacus more common than
psoas; 50% isolated ilacus injuries;
only1 isolated psoas injury

Location of injury:
Distal MTJ Iliacus
Distal MTJ psoas major
Origin iliacus - 4
Tendons Iliacus & psoas - 1

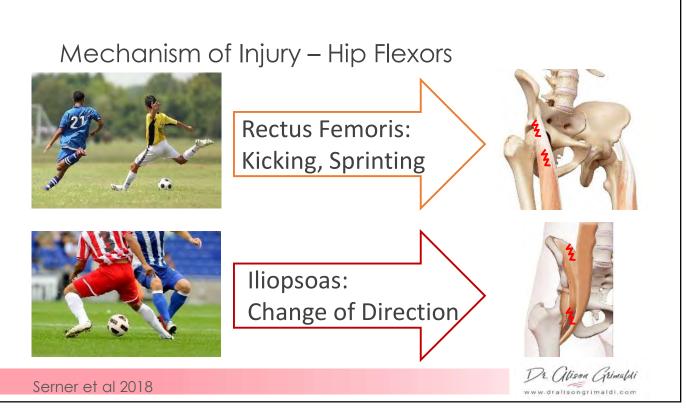
Serner et al 2018

Dr. alison Grimaldi


Contemporary Diagnostic & Management Strategies

Serner et al 2018

Dr. alison Grimaldi

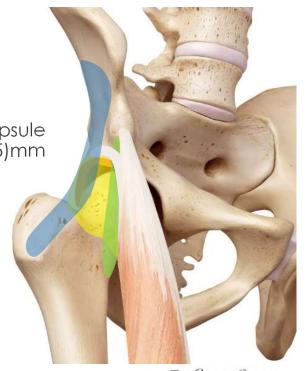

www.dralisongrimaldi.com

MTJ: Musculotendinous junction; DH: Direct head of

Rectus Femoris; IDH: Indirect head of Rectus Femoris

189

Contemporary Diagnostic & Management Strategies


Rectus Femoris
The capsular connection

Indirect/Reflected Head

Attachment to anterosuperior capsule - 26.1(7.6–39.8)mm x 10.1 (5.3–16.5)mm

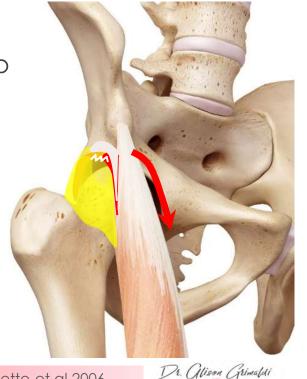
Named as part of the

- 'Stability Arc' of the anterior hip
- RF Reflected Head
- Iliocapsularis
- Gluteus Minimus

Cooper et al 2015, Walters et al 2014, Philippon et al 2014

Dr. Alison Grimaldi www.grallsongrimaldi.com

191


'HALTAR'

- the SLAP lesion of the hip

Hip Antero-superior Labral
Tear with Avulsion of the
Rectus femoris

Avulsion of the reflected head may result in

- -capsular rupture
- -labral tear
- -chondrolabral separation

www.dralisongrimaldi.com

Foote et al 2013, Hosalkar et al 2012, Ouellette et al 2006

Contemporary Diagnostic & Management Strategies

Rectus Femoris Tendinopathy

Gradual and progressive pain onset

MOI: increase in or excessive training volume – kicking, sprint starts, jumping, eccentric loading

Clinical Indicators

-tenderness AllS/subspine

- pain on active loading

- SLR

- Isometric Hip flexion

- Isometric Knee ext - prone

- Isometric Knee ext - Mod Thomas test

Consider effect on joint

Dragoni & Bernetti 2016, Pesquer et al 2016

www.dralisongrimaldi.com

193

Management of Rectus Femoris Overload

Load Management

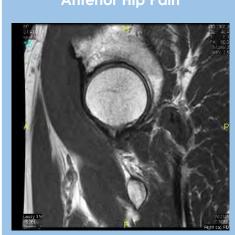
Manage general training loads

Reduce specific loads - traction force on rectus femoris

- hip extension + knee flexion stretching unhelpful
 - eccentric loads provocative
- postures & movement habits *swayback posture

Exercise Therapy

- Optimise function of adjacent joint stabilisers
 - iliocapsularis & gluteus minimus
- Targeted strengthening initially with isolated seated knee extension & hip flexion with knee flexed (no SLR) – progress to multi-joint movements as tolerated, eccentric last



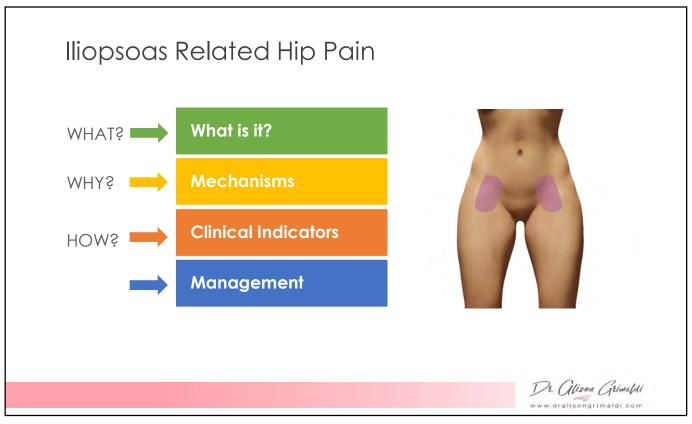
Contemporary Diagnostic & Management Strategies

Soft Tissue Related Pain

lliopsoas Related Anterior Hip Pain

Groin Pain

195

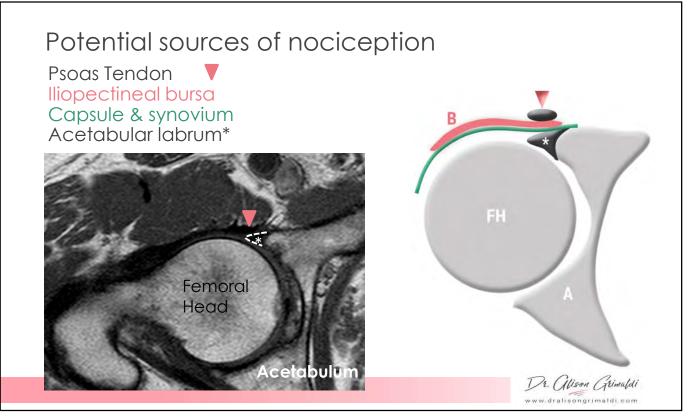

ANTERIOR HIP & GROIN PAIN
Soft Tissue
Related Pain

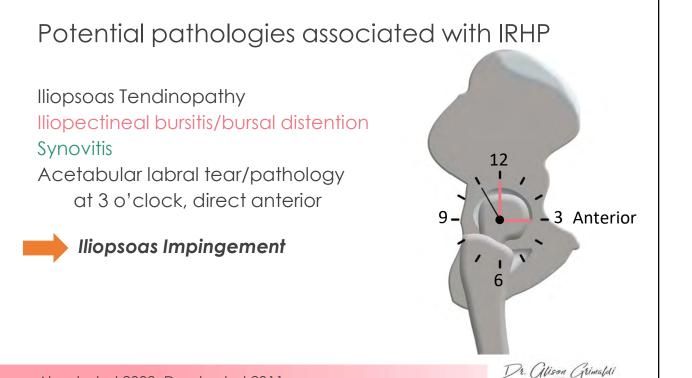
Iliopsoas Related Hip Pain Module 2 – Lesson 2

Contemporary Diagnostic & Management Strategies

197

Iliopsoas-Related Hip Pain


Pain associated with Iliopsoas tendon impingement or friction against the acetabular rim or femoral head– native or prosthestic



Contemporary Diagnostic & Management Strategies

199

200

Alpert et al 2009, Domb et al 2011

www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

Potential mechanisms of iliopsoas-related hip pain

Compression

Iliopsoas Tendon Iliopectineal bursa Capsule & synovium Acetabular labrum

Influenced by:

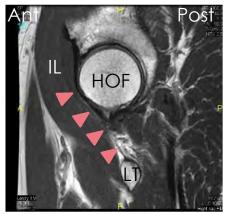
Joint position
Structure
Joint stability
Movement Patterns
Volume of activity –
esp rapid increases in
activities that impose
compressive loading

201

Effect of hip position – range of hip flexion/extension
Sagittal Plane MRI

Above 60° Hip Flexion

No bony contact


15-60° Hip Flexion

Pulley transferred to pelvic brim after loss of contact with HOF

0-15° Hip Flexion

Maximum pressure HOF HOF acts as pulley Tendon stabilises HOF Posterosuperior force

Ant: Anterior; Post: Posterior; HOF: Head of Femur; IL: Iliacus; LT: Lesser

Trochanter

Dr. alison Grimaldi

Yoshio et al 2002

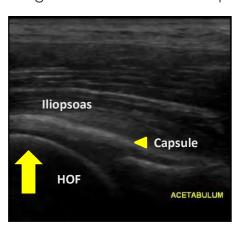
Contemporary Diagnostic & Management Strategies

Structural factors increasing prominence of the HOF/acetabulum:

FAI OA

Prominent prosthesis

Henderson & Lachiewicz 2012, Mardones 2016


203

Factors increasing prominence of the HOF

Anterior translation associated with anterior instability

Increased requirement for dynamic stability mechanisms

Longitudinal US at Anterior Hip

Prox

Dr. alison Grimaldi www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

Postural & movement factors increasing impingement of Psoas tendon

Increased hip extension:
Sway posture
&/or longer stride length

Lordotic posture with short iliopsoas: Moderate- large stride length

205

Clinical Indicators of IRHP

Interview Features:

- Anterior hip pain usually mid-inguinal, may extend prox/distal
- May report clicking or snapping at the anterior hip
- May co-exist with FAI or Instability

Physical Features: (Poor predictors of hip flexor pathology Serner et al 2016)

Often +ve on FADDIR/Q

Pain on active &/or resisted hip flexion

Mod Thomas Test: Pain on stretch & resistance

+/- +ve snapping hip test

+/- TOP Iliopsoas – useful for ruling out acute M-T tears

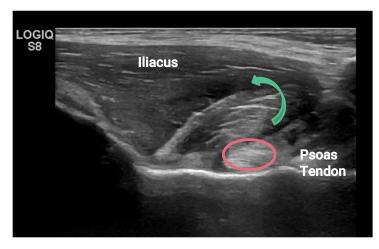
Contemporary Diagnostic & Management Strategies

Hip flexion abduction ER

Active eccentric lowering

Relative extension adduction IR

Preset tendon lateral to lliopectineal eminence & HOF


Dr. alison Grimaldi

Johnston et al 1998

207

Anterior Snapping Hip Test

OR..... Tendon rolls over muscle belly & snaps back down onto pelvic brim

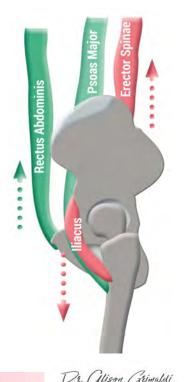
Normal: Iliacus muscle belly holds down psoas tendon

Snapping hip: Psoas tendon lifts, then traps deep bundle iliacus before snapping around, onto pelvis

Dr. alison Grimaldi www.dralisongrimaldi.com

Deslandes et al 2008, Winston et al 2007

Contemporary Diagnostic & Management Strategies

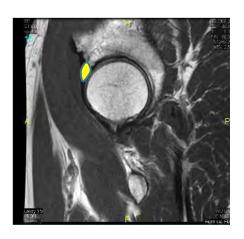

Effect of pelvic position?

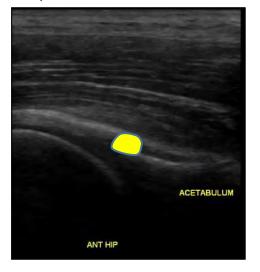
Iliacus & ES = Anterior pelvic tilt/Lx Ext Rectus Abdominis = PPT/Lx Flexion Psoas Major – variable effect depending on start position

lliacus may be delayed enough by posterior pelvic tilt prior to hip flexion, to allow psoas tendon to escape from beneath iliacus muscle belly

Maintaining neutral pelvic position appears to assist in avoidance of snapping hip.

Park et al 2013, 2014




Dr. alison Grimaldi www.dralisongrimaldi.com

209

Other causes of psoas snapping

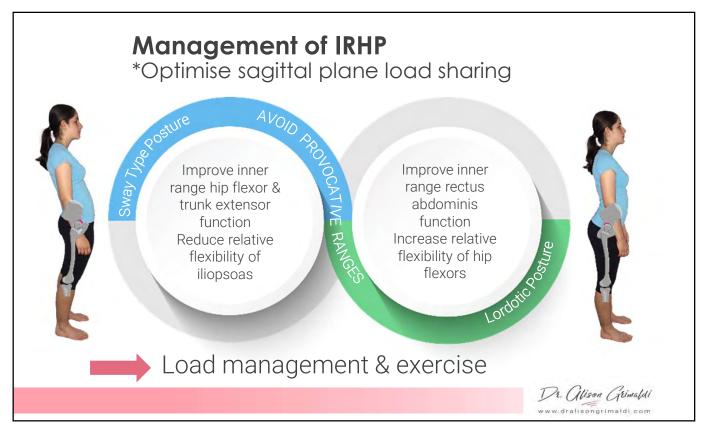
- Bifid tendon
- Snapping over paralabral cyst

Deslandes et al 2008

Dr. Mison Grimaldi www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

THOSE WITH ILIOPSOAS IMPINGEMENT OR ANTERIOR SNAPPING HIP HAVE SHORT HIP FLEXORS


Stretch
Surgically release

Johnston et al 1998, 1999, Keskula et al 1999, Lewis 2010

Dr. alison Grimaldi www.dralisongrimaldi.com

211

Contemporary Diagnostic & Management Strategies

Load Management

Reduce

- sustained
- repetitive
- loaded
- rapid

EOR Hip Ext

Modify Technique, Volume, Training schedule

Posture & Gait Retraining

213

Low level hip flexor lumbopelvic training

- Optimise kinematic control
- Optimise relative flexibility/ antagonist balance

Sways - long hip flexors

Maintain neutral Avoid posterior pelvic tilt Bias concentric phase

Lordotics - short hip flexors

Maintain neutral
Avoid ant pelvic tilt
during extension
Bias eccentric phase

Contemporary Diagnostic & Management Strategies

Effect of contraction mode on muscle fascicle length – evidence from hamstrings

Eccentric loading

Significant increase in BFLH fascicle length over 28 days training

Concentric loading

Significant decrease in BFLH fascicle length over 28 days training

Lengthening consistently achieved by eccentric loading – seated ecc curl, Nordic curl, eccentric Hip Extension

Timmins et al 2016, Bourne et al 2017

Dr. alison Grimaldi

215

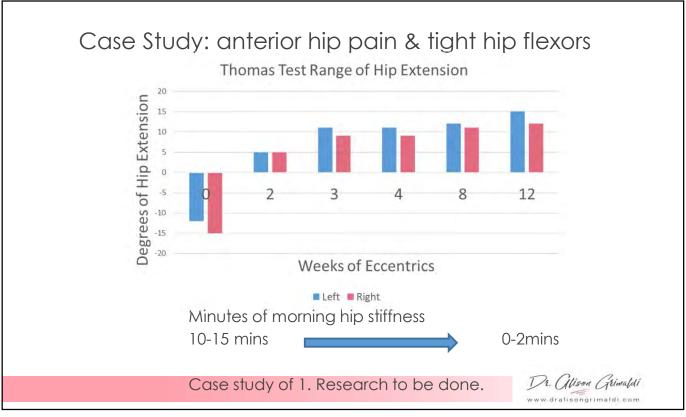
Lordotics:

Train to lengthen under load

Eccentric-only or eccentric biased loading

Eccentric Lean Backs

Increase difficulty with thigh stabilisation & load, as tolerated


Eccentric Leg Lowers

Contemporary Diagnostic & Management Strategies

217

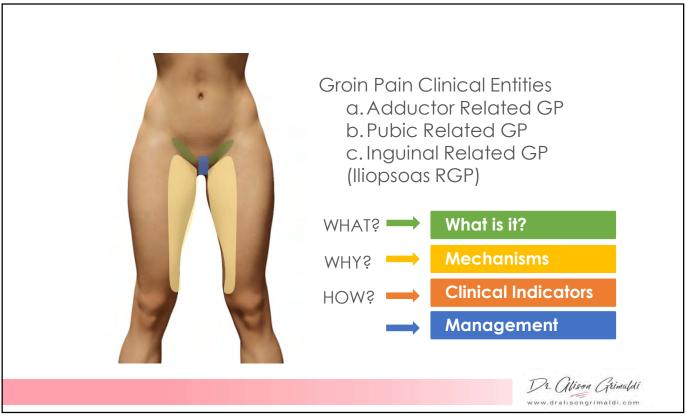
IRHP Key Points

- IRHP is most commonly associated with excessive compression or combinations of high compressive & tensile loads
- Compression of the tendon and underlying joint structures may occur in association with
 - long hip flexors & higher ranges of hip extension
 - short hip flexors & normal-high ranges of hip extension
- Hip flexor stretching is unlikely to be helpful
- For those with long hip flexors reduce postural & dynamic extension and improve hip flexor and L-P function
- For those with short hip flexors learn to dissociate pelvis from femur, shorten RA & lengthen hip flexors eccentric might be best

Contemporary Diagnostic & Management Strategies

For further reading on this topic, visit ebooks at www.dralisongrimaldi.com

219


ANTERIOR HIP & GROIN PAIN
Soft Tissue
Related Pain
Groin Pain - Part 1

Module 2 – Lesson 3

Contemporary Diagnostic & Management Strategies

221

Groin Pain

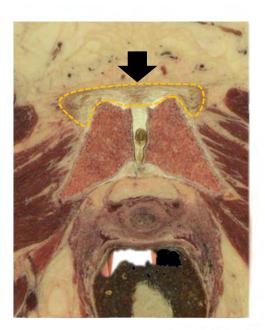
- Prevalent in sport * football codes & ice hockey
- 2nd most common injury in football codes, after hamstring injury
- High rates of re-injury (20-25% Orchard et al 2013)
- Re-injuries ≈ 2x as long out of sport (Werner et al., 2009)
- Few risk factors identified:
 - previous injury
 - higher standard of play
 - · lower adductor strength

Maffey & Emery 2007, Ryan et al 2014, Whittaker et al 2015

Dr. alison Grimaldi
www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

Adductor Connections


Strong fibrous connections into the pubic aponeurosis that sits directly anterior to PS

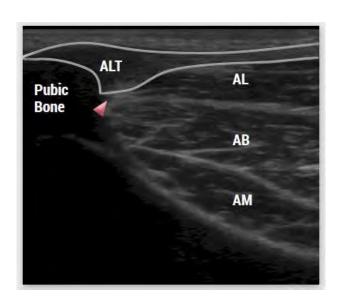
Fibrous connections exist between:

- L & R adductor longus (AL)
- AL & both ipsilateral & contralateral abdominals
- AL & rectus abdominis (RA)
- tendons, PS capsule & disc

Spread of symptoms into connected tissues common

Robinson et al 2007, Robertson et al 2009

223


Adductor Connections

AL inserts via both a tendinous & muscular insertion

Muscular insertion has a short transition zone onto the bone

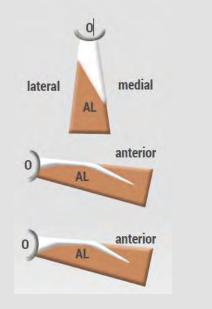
Females more tendinous, males may have more muscular attachment

Does this put males at higher risk of injury??

Davis et al 2011, Strauss et al 2007, Tuite et al 1988

Dr. alison Grimaldi www.dralisongrimaldi.com

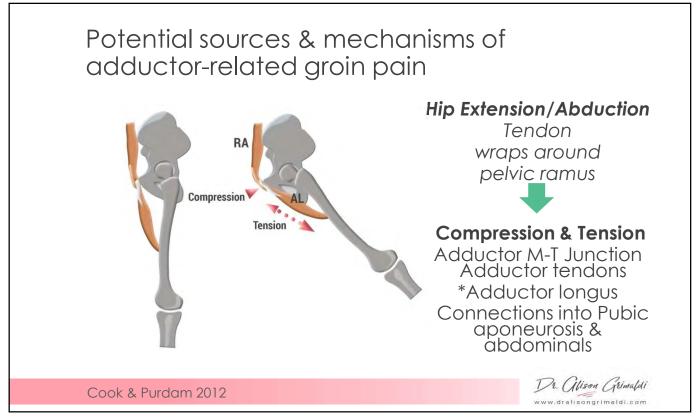
Contemporary Diagnostic & Management Strategies


Adductor Connections

AL tendon

- lies superficially on the muscle
- medially, extends further distally
- substantial intramuscular tendon
 - 11-13cm in length; ≥ 20% fem length

Intramuscular tendons may provide extra strength & stability for transmission of large mechanical forces May fail under high load


Some adductor muscle strains likely to be intramuscular tendon or MTJ injuries

Dr. alison Grimaldi
www.dralisongrimaldi.com

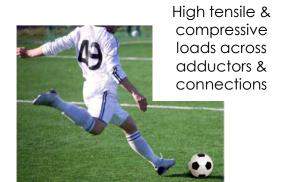
Davis et al 2011

225

Contemporary Diagnostic & Management Strategies

Potential mechanisms of adductor-related groin pain

Combinations of large range, high speed and high repetition of movement into/out of hip extension/abduction


e.g. Instep Kick:

End of wind up phase:

Hip in maximal extension
AL at max rate of lengthening
AL at max activation

At 65% of swing phase:

Moving forward & into Abduction Max length of AL

Dr. alison Grimaldi

Charnock et al. 2009

227

Mechanisms of acute AL injury

*Rapid muscle activation during lengthening Most injuries were in non-contact situations (71%) & following a quick reaction to a change in play (53%)

Injury actions were:

- change of direction (35%) Closed chain action
- kicking (29%) Open chain action
- reaching (24%) Closed chain action
- jumping (12%) Open chain action

Closed Chain MOI (59%):

· Hip Ext & Abd with ER

Open Chain MOI (41%):

Change from Hip Ext to F & Abd to Add with ER

Andreas Serner et al 2018 Br J Sports Med

Dr. alison Grimaldi www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

Clinical Entities Definitions

Adductor-related groin pain

Most common

Definition:

Adductor tenderness AND pain on resisted adduction testing

Inguinal-related groin pain

Definition:

Pain in the inguinal canal region AND tenderness of the inguinal canal AND no palpable inguinal hernia. Pain on resistance of the abdominal muscles OR on Valsalva/cough/sneeze.

Pubic-related groin pain

Definition:

Tenderness of the pubic symphysis & adjacent bone

Weir et al 2015

229

Clinical Indicators of Adductor Related GP

Interview Features:

- Pain in the adductor region, * proximally
- Aggravated by running esp change of direction, kicking
- Loss acceleration, power, speed & stride length

Physical Features:

Squeeze tests useful +LR for predicting pathology in acute but not long standing ARGP

Palpation useful for ruling out ARGP

BKFO reduced ROM

Drew et al 2014, Serner et al 2016/17, Kloskowska et al 2016, Mosler et al 2015

Dr. Alison Grimaldi
www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

Copenhagen 5 second squeeze test as a quick indicator of load tolerance

Scores correlate well with HAGOS-Sport
Pain 6-10 = worst (lowest) HAGOS score
Responsive to change over time
Useful for screening, monitoring & directing Mx

6-10

STOP

3-5

ATTENTIO

0-2

GO

Traffic light approach for helping direct Mx & sports participation

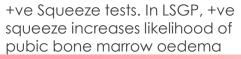
Numeric Pain Rating

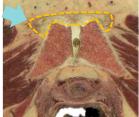
Thorborg et al 2017

231

Clinical Indicators of Pubic Related GP

Interview Features:


- Pain in the pubic region
- Agg by running esp COD, kicking, Split lunge/wide squat, hop
- Loss acceleration, power, speed & stride length


Physical Features:

Positive Squeeze = global distress of structures of anterior pubic region (Falvey et al 2016)

Palpation of PA useful for ruling out PA Tears

Pain on 'Pubic Symphysis Stress Test'

Dr. alison Grimaldi
www.dralisongrimaldi.com

Falvey et al 2016, Verrall et al 2005

Contemporary Diagnostic & Management Strategies

Groin Pain Impairments

ADDUCTOR WEAKNESS is

- ≥a significant risk factor for developing groin pain (Whittaker et al. 2015)
- ➤a consistent impairment in those with ARGP (Kloskowska et al. 2016, Mosler et al. 2015)

BUT ...

233

Are adductor strength test results a direct reflection of adductor muscle capacity?

No studies exploring adductor muscle size or quality in those with groin pain or how this effects risk of developing groin pain

Application of a pelvic belt results in

- **adduction** strength
- groin pain (Mens et al 2006)
- Adductor strength despite absence of any isolated adductor strengthening during rehabilitation (King et al 2018)

Contemporary Diagnostic & Management Strategies

Adductor strength tests may be more accurately interpreted as tests of Load tolerance (painful) or Load transfer (painfree) across the anterior pubic region

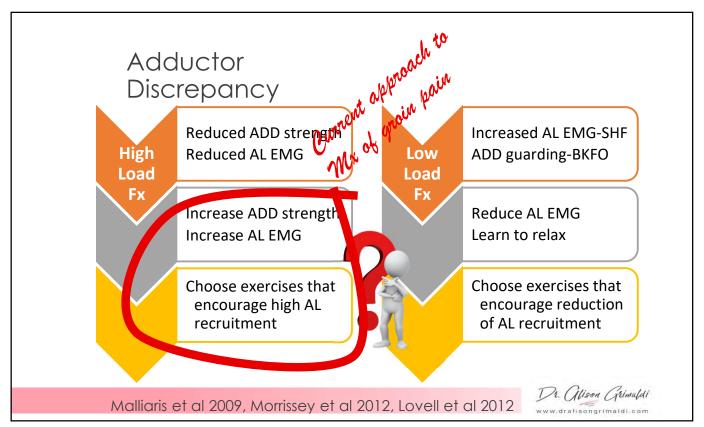
235

Adductor EMG & Groin Pain

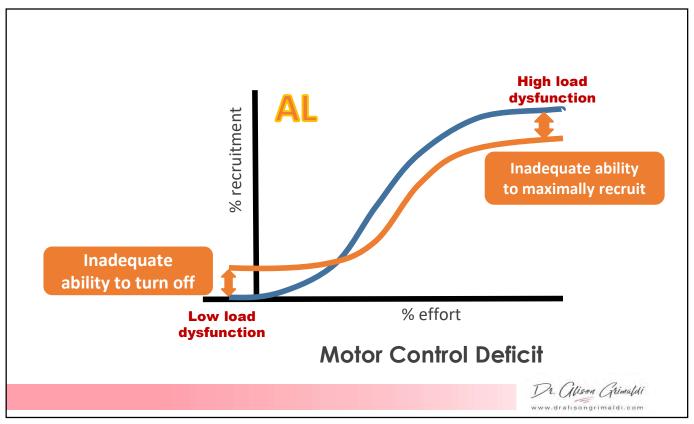
Contemporary Diagnostic & Management Strategies

BKFO ROM & Groin Pain

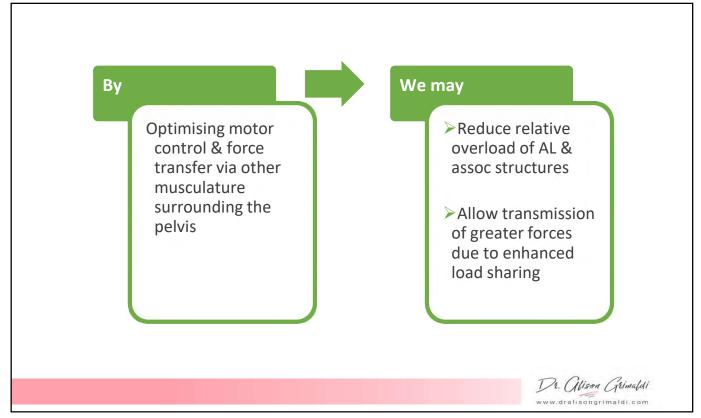
BKFO in athletes with groin pain But not a risk factor for injury Kloskowska et al 2016, Mosler et al 2015


Response, rather than mechanism

May reflect a protective upregulation
of adductor longus activity



237

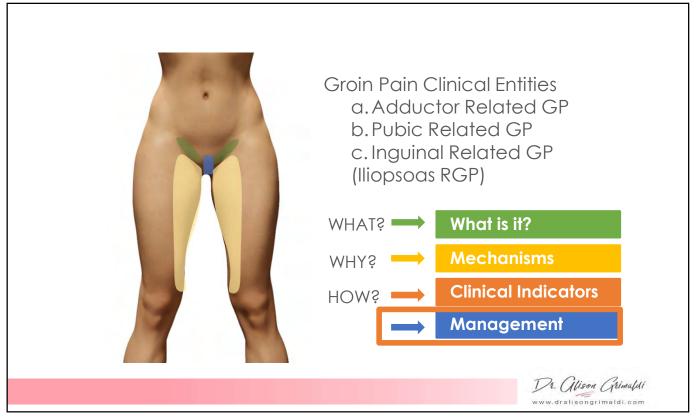


Contemporary Diagnostic & Management Strategies

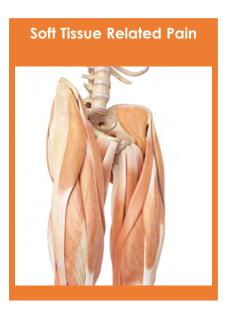
239

Contemporary Diagnostic & Management Strategies

Other Impairments


- LSGP: delay in transversus abdominis onset during ASLR Cowan et al 2004
- LSARGP: lower resting muscle thickness of transversus abdominis
 Jansen et al 2010
- GP (OP):Isokinetic dynamometry lower concentric back extensor & eccentric abdominal strength Mohammad et al 2014
- Smaller Lumbar Multifidus size may increase risk of more severe groin injury Hides et al 2011

Much more research is required, but muscles that influence lumbopelvic position and movement are important in load transfer across the anterior pelvis


Dr. alison Grimaldi
www.dralisongrimaldi.com

241

Contemporary Diagnostic & Management Strategies

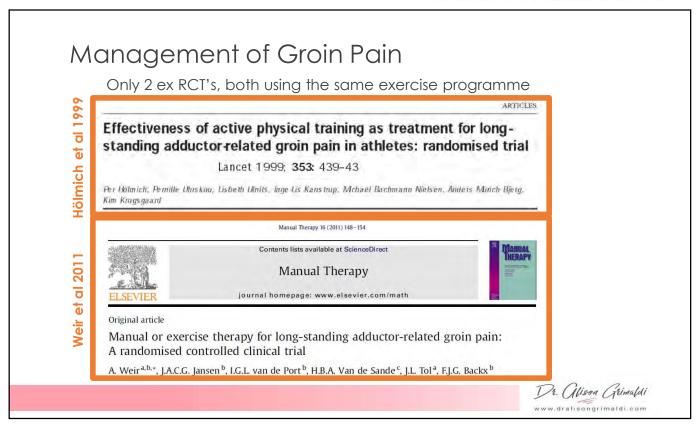
ANTERIOR HIP & GROIN PAIN
Soft Tissue
Related Pain
Groin Pain - Part 2

Module 2 - Lesson 4

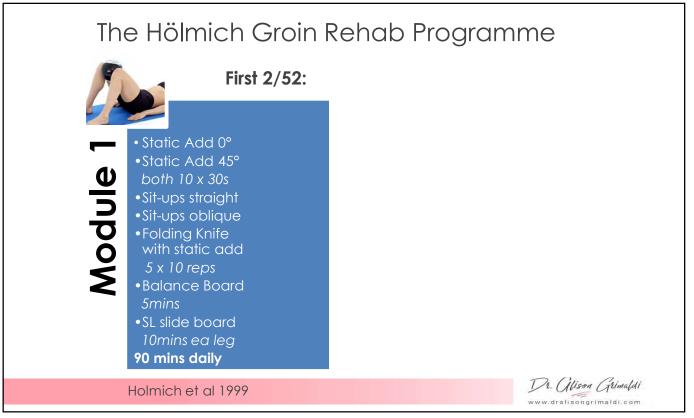
243

Management of Groin Pain

Evidence for Mx of groin pain


- insufficient
- generally of poor quality with high risk of bias
- inadequate reporting of the details of non-surgical interventions

Charlton et al 2017, King et al 2015, Machotka et al 2009, Serner et al 2015



Contemporary Diagnostic & Management Strategies

245

Contemporary Diagnostic & Management Strategies

Management of Groin Pain

Hölmich et al 1999 RCT:

Active Training

3 x week, 8 – 12 weeks 24 – 36 Physio sessions Supervised group exercise 90mins + HEP on other days No stretching

VS

Passive Therapy

2 x week, 8 – 12 weeks 16 – 24 Physio sessions Individual Rx Laser & Tens Friction of the tendon Stretching (daily)

247

Hölmich et al 1999 Outcomes

Success Criteria:

- a. No tenderness on palpation of adductors
- b. -ve squeeze test
- c. No pain on Return To Sport

Rx Outcome	No. criteria met	AT	PT
Excellent	3	23 >>	4
Good	2	2	6
Fair	1	3	6
Poor	0	6 <<	18
RTS	18·5 wks (range 13–26)	79% @ 18.5/52	14%

AT group achieved same increases in ROM with NO stretching

Contemporary Diagnostic & Management Strategies

Management of Groin Pain

Weir et al 2011:

Active Training

Hölmich programme
3 Physio visits to supply prog
HEP 3 x week, min 8 weeks
No stretching
Return to running prog

249

Weir et al 2011 Outcomes

Success Criteria:

- a. No tenderness on palpation of adductors
- b. -ve squeeze test
- c. No pain on Return To Sport

Rx Outcome	No. criteria met	AT	MMT
Excellent	3	5	7
Good	2	7	7
Fair	1	4	1
Poor	0	6	11
RTS		55% @18.5/52	50% @12.5/52

No difference between groups

Conclusion: 'neither treatment was very effective'

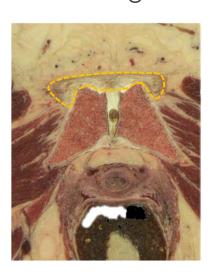
Contemporary Diagnostic & Management Strategies

How do we optimise outcomes?

More supervised sessions?

Greater volume of exercise?

Different exercises?


Expert clinicians seem to be divided on the use of adductor loading, particularly early in rehab

Images from PhysiApp

251

Loading across the pubic region

3820, athletic groin pain Injury to the pubic aponeurosis in 240 (62.8%) Most common diagnosis

> **Recommend avoiding** high-load adduction

Falvey et al 2016, King et al 2018

Contemporary Diagnostic & Management Strategies

King et al 2018 – Large Cohort Study

205 patients with athletic groin pain (25% withdrew, no controls)

Rehabilitation focused on intersegmental control

No isolated adductor strengthening

King et al. Br J Sports Med 2018;52:1054-1062

www.dralisongrimaldi.com

253

King et al 2018 – Exercise Streams Sagittal Frontal/Transverse **Streams** Segment Streams Abdominal Thorax Abdominal Double Leg Squat on Pelvis Lateral Hip Strength Deadlift Hip Flexor Lateral Hip Control Double Leg Squat **Pelvis** Lateral Hip Strength Lunge on Femur Plyometric Deadlift Double Leg Squat Femur Lateral Hip Control on Tibia Lateral Hip Strength Lunge Deadlift Plyometric Lateral Hip Strength **Tibia** on Foot Dr. Glison Grimaldi

254

King et al. Br J Sports Med 2018;52:1054-1062

Contemporary Diagnostic & Management Strategies

Focus:
intersegmental
control &
strength

STREAMS

- Hip flexor
- Lat Hip Control
- Abdominal
- DL Squat
- Lat Hip Strength
- Deadlift
- Lunge
- Plyometric
- 3-4 sets
- 5-6 reps
- 4 x/week

King et al. Br J Sports Med 2018;52:1054-1062

255

King et al 2018 – Large Cohort Study

Rehabilitation focused on intersegmental control No isolated adductor strengthening

Outcomes:

73% (150/205)RTP in mean 9.9 weeks (±3.5)

Mean 5.1 (± 1.5) appointments prior to RTP, 12-16 days apart Significant improvements in:

- HAGOS scores (ES: 0.6–1.7)
- Add squeeze test in all 3 positions (ES: 0.49–0.68)

Change in 3D Kinematics during a change of direction task

- · Reduced trunk side flexion
- Increased pelvic rotation in direction of travel
- Changes to variables associated with improved cutting performance (Falvey et al 2016)

King et al. Br J Sports Med 2018;52:1054-1062

Dr. alison Grimaldi
www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

What about prevention of groin injury?

Twitter Post: Addition of isolated ADD Ex to normal training resulted in '41% reduction in risk of **groin problems** for players performing the programme!'

Harøy et al 2018 Br J Sports Med

Dr. alison Grimaldi
www.dralisongrimaldi.com

257

Injury Definitions In Harøy study

Groin Problem defined as:

- any hip or groin symptoms e.g. 'pain, ache, stiffness, clicking/catching or other complaints related to the groin'
- reduced training participation, training volume or performance due to groin problems

Substantial Groin Problem

defined as:

 moderate or severe reductions in training volume or football performance, or a complete inability to participate due to groin problems.

Harøy et al 2018 Br J Sports Med

Dr. alison Grimaldi www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

Outcomes

Control Group

Groin problems: 67%

Substantial Groin problems: 37%

Time loss %: 33

Significant difference

OR:0.59 No significant difference

OR:0.82

No reduction

in time loss

Time loss %: 41

Substantial

Intervention Group

Groin problems:55%

Groin problems: 28%

Low compliance in 125/247

50%

Why?: 5 min ex within training

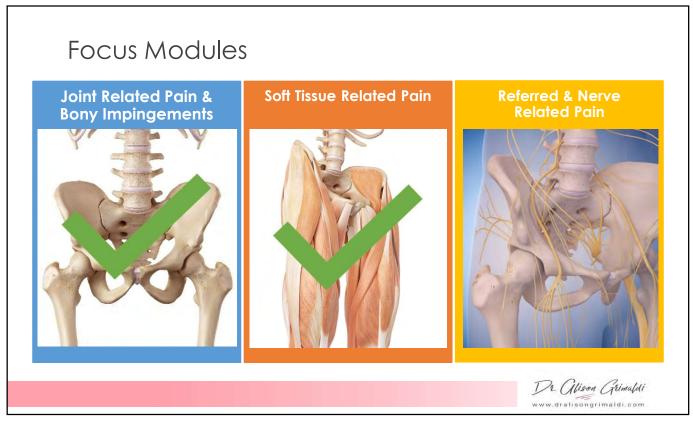
Harøy et al 2018 Br J Sports Med

Dr. Glison Grimaldi www.dralisongrimaldi.com

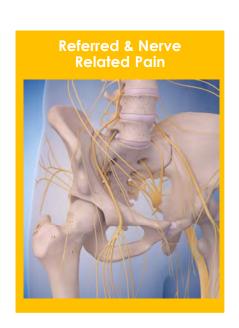
259

Groin Pain Key Points

Groin Pain continues to be prevalent & recurrent NO MAGIC BULLET


Minimising risk & optimising recovery is likely to require:

- attention to more than a single muscle group
- focus on mechanisms of load transfer across the pubic region
- attention to individual impairments & mechanisms that may increase risk of anterior overload structural/kinematic/behavioural



Contemporary Diagnostic & Management Strategies

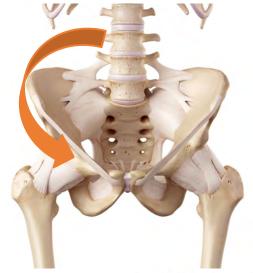
261

ANTERIOR HIP & GROIN PAIN Referred & Nerve Related Pain

Module 3 - Lesson 1

Contemporary Diagnostic & Management Strategies

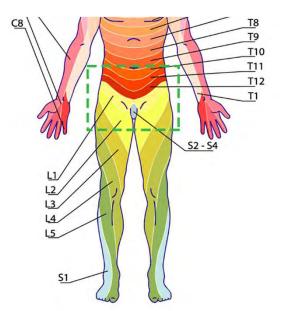
Lumbar related anterior hip & groin pain


Radicular Pain

Arising from nerve root impingement/irritation
Sharp, shooting pains or burning
+/- additional deep, dull ache
+/- paraesthesia, changes in reflexes
& motor function

Somatic Pain

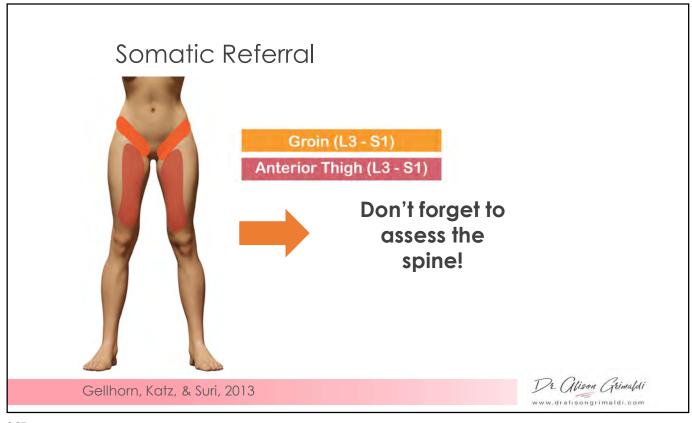
Referred from other structures such as facet joints & intervertebral discs Dull, aching or gnawing pain Area of pain often wide and difficult to localise


No paraesthesia or loss of reflexes

263

Radicular Pain

Dermatomes T12 – L2 main levels referring to anterior hip & groin

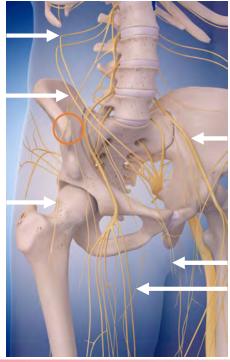

Note: Dermatomal distribution is rarely this defined. Up to 2/3rds have symptoms that do not correlate with defined territorial distributions

Murphy et al 2009, Schmid et al 2018

Dr. alison Grimaldi www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

265


L1-2;Motor Supply: Abdominals; Skin: lat hip & above pubis

Ilioinguinal N

L1-2; Motor Supply: IO, TA (low); Skin: inguinal,genitals

Lateral Femoral Cutaneous N

L2-3; Skin: Lateral thigh

Peripheral Nerves of the Anterior Hip & Groin

Femoral N

L2-4; Motor Supply: illiacus, pectineus, sartorius, quads; Skin: Anterior thigh

Genitofemoral N Genital branch Femoral branch

L1-2; Skin: Anterior scrotum/labia majora, lateral femoral triangle

Dr. alison Grimaldi www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

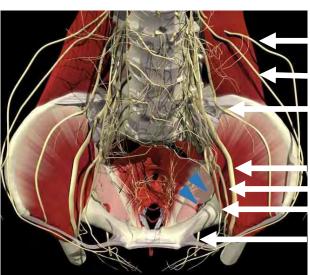


Image from Primal Pictures

Nerves of the anterior hip & groin

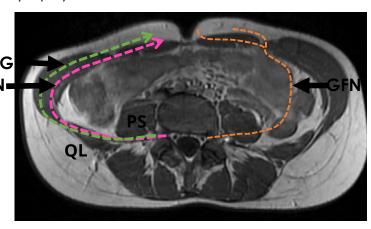
Iliohypogastric N L1 (T12)

Ilioinguinal N L1

Lateral Femoral Cutaneous N L2-3

- emerges through lateral psoas
- passes above inguinal ligament Femoral N L2,3,4

Genitofemoral N L1,2 - Femoral branch Genitofemoral N - Genital branch


Obturator N – L2,3,4; Motor Supply: Anterior Branch:AL,AB,Gracilis (Pect) Posterior Branch:AM,OE Skin: Medial thigh

267

The anterior branch of the iliohypogastric nerve exits the abdominal wall and runs just above the inguinal ligament to supply a small area of skin above the pubic symphysis

Both exit through or between Psoas & QL, then travel through abdominal wall

Exits through Psoas. GBr: runs through inguinal canal; FBr: runs under inguinal lig to skin

The ilioinguinal nerve enters the inguinal canal and then divides into its terminal cutaneous branches

Contemporary Diagnostic & Management Strategies

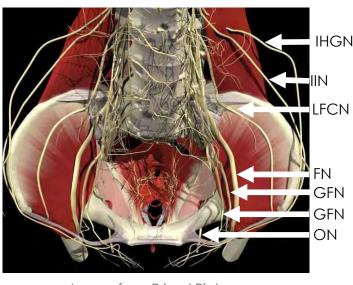


Image from Primal Pictures

Elkins et al 2017, McCrory & Bell 1999, Salas & O'Donnell 2016, Reda et al 2018, Shadhu et al 2018

Possible entrapment zones:

Paraspinal: IHN, IIN, GFN

Through abdo wall: IHN, IIN, GFN

IHGN Within pelvis

Through inguinal canal: IIN, GFN Through obturator foramen: ON Between OE & pectineus: ON

Possible Mechanisms:

latrogenic – hernia repair, abdo wall incisions,

lumbar surgery, hip arthroscopy

Pregnancy

Endometriosis

Trauma

Muscle dysfunction/hypertonicity

Tumour/cysts

Dr. alison Grimaldi
www.dralisongrimaldi.com

269

Clinical Indicators of Nerve Related Anterior Hip & Groin Pain

Interview Features:

Symptoms in the area of nerve supply, however:

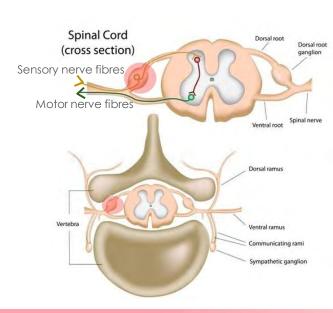
- There is much overlap & territories are not distinct
- Spread of symptoms may occur due to remote neuroinflammatory processes

lliohypogastric

llioinguinal

Genitofemoral

Obturator


Femoral

Dr. alison Grimaldi

Contemporary Diagnostic & Management Strategies

Remote effects of peripheral nerve entrapment

Evidence has shown immunemediated inflammation at DRG, 2° to peripheral nerve entrapment

Dorsal root ganglion (DRG) contains cell bodies of afferent nerve fibres from multiple spinal levels

Neuroinflammatory responses can also occur in the spinal cord (esp dorsal horn) & higher pain centres Effects may spread to the contralateral dorsal horn & DRG

Explain extraterritorial spread of symptoms Explain mirror pain

Schmid et al 2013, 2018

Dr. Alison Grimaldi www.dralisongrimaldi.com

271

Clinical Indicators of Nerve Related Anterior Hip & Groin Pain

Interview Features:

- Nature of pain burning, shooting, deep aching
- May also report itching, prickling, skin crawling...
- May experience spontaneous pain (AIGS)
- Paraesthesia, numbness, weakness (flexors,*add's)

Physical Features: (Conduct neuro exam as required)

Femoral Nerve Slump

Modified Thomas Test

Reproduction of pain &/or paraesthesia in hip extension Altered by head position + hip abd for Obturator Nerve

Dr. Alison Grimaldi www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

Neurodynamic Testing

Negative neurodynamic tests do NOT exclude the presence of nerve dysfunction

patients with more severe nerve damage are less likely to test +ve on NDT

Exaggerated responses to NDT may be due to generalised sensitisation, rather than sensitisation of peripheral nerves

NDT are not diagnostic for neuropathy but detect heightened neural mechanosensitivity

Baselgia et al 2016, Boyd et al 2010, Schmid et al 2018

273

Assessing nerve health

-ve light touch,
 motor or nerve
 condition tests
 DO NOT rule out
 entrapment
 neuropathy

Schmid 2016, Schmid et al 2018

Contemporary Diagnostic & Management Strategies

Assessing nerve health

Large Fibre Nerve Tests	Small Fibre Nerve Tests
Light touch	Pin-prick sensitivity
Vibrometry	Warm/Cold testing
Texture discrimination	Quantitative Sensory testing
Two point discrimination	Sympathetic Reflex Testing
Reflexes	Laser or heat evoked potentials
Muscle testing	Skin biopsy
Electrodiagnostic testing	
chmid 2016, Schmid et al 2018	Dr. Alis www.dralisor

275

Management

No evidence for non-invasive interventions

Best options

- Neurodynamic treatments
- Optimise health of adjacent soft tissues abdominal wall, iliopsoas, obturators/adductors
- Trial lumbar manual therapy T12 L4 region

Medical options:

- Nerve block
- Radiofrequency neurotomy
- Surgical release of entrapment

Contemporary Diagnostic & Management Strategies

Examples of neurodynamic exercises

277

Effects of neurodynamic treatments

There is no evidence that neurodynamic treatments increase nerve excursion, however there is evidence that such treatments:

Produce short lasting hypoalgesia
Aid dispersal of intraneural oedema
Stimulate anti-inflammatory effects within DRG
& higher pain centres
Activate endogenous opioid analgesic pathways
Facilitate peripheral nerve regeneration

Schmid et al 2018

Contemporary Diagnostic & Management Strategies

Referred & Nerve Related Pain Key Points

Consider if

- neurogenic features in patient interview
- Hx, signs or symptoms of lumbar component/source
- problem arose after abdominal (C/S, hernia repair, laparoscopy) or pelvic surgery (prolapse surgery, bladder surgery), hip arthroscopy, pregnancy
- issues with endometriosis can invade inguinal canal
- other trauma to abdominal wall or groin

Ax: Sensory testing (pin-prick, warm/cold); Assess neurodynamic tests but no defined tests for smaller nerves – may need US guided blocks for diagnosis

Mx: Try to optimise health of interfaces & neurodynamic treatments can assist in reducing local and remote effects

279

Focus Modules

Soft Tissue Related Pain

Dr. alison Grimaldi www.dralisongrimaldi.com

Contemporary Diagnostic & Management Strategies

Join Hip Academy to continue your journey towards hip mastery

For Hip Lovers & Hip Learners

All your hip PD needs in one place
Ongoing access to all hip resources
Online hip courses, ebooks, how-to video
library, pdf resource library
Live member meetings - masterclasses,
Q & A Sessions & case-sharing (+recordings)
Self paced - learn in bite-sized pieces

All the information you need, anytime you need it

Once-only joining fee + monthly membership Cancel anytime

www.dralisongrimaldi.com/hip-academy/

Dr. alison Grimaldi www.dralisongrimaldi.com